首页 > 最新文献

Journal of Electroceramics最新文献

英文 中文
Honoring a Legacy – Heartfelt Thanks to Our Former Editor-in-Chief! 向遗产致敬--衷心感谢我们的前任主编!
IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-10-28 DOI: 10.1007/s10832-024-00362-0
Sanjay Mathur
{"title":"Honoring a Legacy – Heartfelt Thanks to Our Former Editor-in-Chief!","authors":"Sanjay Mathur","doi":"10.1007/s10832-024-00362-0","DOIUrl":"10.1007/s10832-024-00362-0","url":null,"abstract":"","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"52 1","pages":"1 - 2"},"PeriodicalIF":1.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10832-024-00362-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of MnO2 on the microstructure and electrical properties based on ZnO-Bi2O3-Sb2O3-Cr2O3-Co2O3 varistors 基于 ZnO-Bi2O3-Sb2O3-Cr2O3-Co2O3 变阻器的 MnO2 对微结构和电气性能的影响
IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-06 DOI: 10.1007/s10832-024-00360-2
Xiaolong Huang, Jiaqi Li, Guangxu Pan, Dachuan Zhu

In this work, nano ZnO powders, Bi2O3, Sb2O3, Cr2O3, Co2O3 and a various content of MnO2 were blended thoroughly and pre-calcined at 800℃ and then pressed in to pellets which were sintered at 950℃ to form varistor ceramics. Subsequently, the effects of MnO2 on the microstructure and electrical properties of the ZnO-based varistor were investigated. It was found that the amount of spinel phase (Zn7Sb2O12) and Bi2O3 phase increased with the MnO2 increasing, while the content of pyrochlore (Zn2Bi3Sb3O14) phase decreased. As a result, the growth of ZnO grain was reduced with the average grain size from 9.5 μm down to 5.3 μm, leading to the increase of breakdown field of ZnO-based varistor. Particularly, the ZnO-based varistor with 1.2 mol% MnO2 exhibited the best comprehensive electrical performance with the breakdown field Eb of 901.4 V/mm, the nonlinear coefficient α of 66.7 and the leakage current density JL of 1.1 µA/cm2.

在这项研究中,纳米氧化锌粉末、Bi2O3、Sb2O3、Cr2O3、Co2O3 和不同含量的 MnO2 被充分混合并在 800℃ 下预煅烧,然后压制成颗粒,在 950℃ 下烧结形成压敏电阻陶瓷。随后,研究了 MnO2 对氧化锌压敏电阻器微观结构和电气性能的影响。研究发现,尖晶石相(Zn7Sb2O12)和 Bi2O3 相的含量随着 MnO2 的增加而增加,而火成岩相(Zn2Bi3Sb3O14)的含量则减少。因此,氧化锌晶粒的生长减小,平均晶粒大小从 9.5 μm 减小到 5.3 μm,导致氧化锌基变阻器的击穿场强增大。尤其是含有 1.2 mol% MnO2 的氧化锌基变阻器表现出最佳的综合性能,击穿场强 Eb 为 901.4 V/mm,非线性系数 α 为 66.7,漏电流密度 JL 为 1.1 µA/cm2。
{"title":"The effects of MnO2 on the microstructure and electrical properties based on ZnO-Bi2O3-Sb2O3-Cr2O3-Co2O3 varistors","authors":"Xiaolong Huang, Jiaqi Li, Guangxu Pan, Dachuan Zhu","doi":"10.1007/s10832-024-00360-2","DOIUrl":"https://doi.org/10.1007/s10832-024-00360-2","url":null,"abstract":"<p>In this work, nano ZnO powders, Bi<sub>2</sub>O<sub>3</sub>, Sb<sub>2</sub>O<sub>3</sub>, Cr<sub>2</sub>O<sub>3</sub>, Co<sub>2</sub>O<sub>3</sub> and a various content of MnO<sub>2</sub> were blended thoroughly and pre-calcined at 800℃ and then pressed in to pellets which were sintered at 950℃ to form varistor ceramics. Subsequently, the effects of MnO<sub>2</sub> on the microstructure and electrical properties of the ZnO-based varistor were investigated. It was found that the amount of spinel phase (Zn<sub>7</sub>Sb<sub>2</sub>O<sub>12</sub>) and Bi<sub>2</sub>O<sub>3</sub> phase increased with the MnO<sub>2</sub> increasing, while the content of pyrochlore (Zn<sub>2</sub>Bi<sub>3</sub>Sb<sub>3</sub>O<sub>14</sub>) phase decreased. As a result, the growth of ZnO grain was reduced with the average grain size from 9.5 μm down to 5.3 μm, leading to the increase of breakdown field of ZnO-based varistor. Particularly, the ZnO-based varistor with 1.2 mol% MnO<sub>2</sub> exhibited the best comprehensive electrical performance with the breakdown field E<sub>b</sub> of 901.4 V/mm, the nonlinear coefficient α of 66.7 and the leakage current density J<sub>L</sub> of 1.1 µA/cm<sup>2</sup>.</p>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, microstructure and characterization of Ultra-low permittivity and dielectric loss ZnO-B2O3-SiO2 glass/SiO2 composites for LTCC application 用于 LTCC 应用的超低介电常数和介电损耗 ZnO-B2O3-SiO2 玻璃/二氧化硅复合材料的合成、微观结构和特性分析
IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-07-25 DOI: 10.1007/s10832-024-00357-x
Yu Xin, Caixia Zhang, Yu Sun, Haojie Dai, Yangfu Liu, Zhongqing Tian, Jianxi Tong, Fancheng Meng

ZnO-B2O3-SiO2/SiO2 glass-ceramic composites are prepared by solid phase reaction method. The DSC curve of ZnO-B2O3-SiO2 glass is analyzed and the effects of ZnO-B2O3-SiO2 glass on the density, microwave dielectric properties, phase composition and microstructure of ceramic fillings are investigated. The results show that the sintering temperature of the composites can be reduced to 910 °C by adding ZBS glass. When the addition of ZBS is 65% (wt%), the dielectric properties of the sample are best when the composite is sintered in 910 °C for 1 h (εr = 4.6, tanδ = 4.85 × 10− 4 at 9.2 GHz, τf = -13.78 ppm/°C). The prepared ZnO-B2O3-SiO2/SiO2 composite is promising candidates for LTCC applications.

采用固相反应法制备了 ZnO-B2O3-SiO2/SiO2 玻璃陶瓷复合材料。分析了 ZnO-B2O3-SiO2 玻璃的 DSC 曲线,并研究了 ZnO-B2O3-SiO2 玻璃对陶瓷填料的密度、微波介电性能、相组成和微观结构的影响。结果表明,加入 ZBS 玻璃后,复合材料的烧结温度可降低到 910 ℃。当 ZBS 的添加量为 65% (重量百分比)时,复合材料在 910 °C 下烧结 1 小时后,样品的介电性能最佳(εr = 4.6,9.2 GHz 时 tanδ = 4.85 × 10- 4,τf = -13.78 ppm/°C)。制备的 ZnO-B2O3-SiO2/SiO2 复合材料有望用于 LTCC 应用。
{"title":"Synthesis, microstructure and characterization of Ultra-low permittivity and dielectric loss ZnO-B2O3-SiO2 glass/SiO2 composites for LTCC application","authors":"Yu Xin, Caixia Zhang, Yu Sun, Haojie Dai, Yangfu Liu, Zhongqing Tian, Jianxi Tong, Fancheng Meng","doi":"10.1007/s10832-024-00357-x","DOIUrl":"https://doi.org/10.1007/s10832-024-00357-x","url":null,"abstract":"<p>ZnO-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>/SiO<sub>2</sub> glass-ceramic composites are prepared by solid phase reaction method. The DSC curve of ZnO-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glass is analyzed and the effects of ZnO-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glass on the density, microwave dielectric properties, phase composition and microstructure of ceramic fillings are investigated. The results show that the sintering temperature of the composites can be reduced to 910 °C by adding ZBS glass. When the addition of ZBS is 65% (wt%), the dielectric properties of the sample are best when the composite is sintered in 910 °C for 1 h (εr = 4.6, tanδ = 4.85 × 10<sup>− 4</sup> at 9.2 GHz, τ<sub>f</sub> = -13.78 ppm/°C). The prepared ZnO-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>/SiO<sub>2</sub> composite is promising candidates for LTCC applications.</p>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"83 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of magnetocaloric effect in La0.67-xEuxBa0.33Mn0.85Fe0.15O3 (x = 0 and 0.1) polycrystalline manganites: experimental vs. theoretical determination La0.67-xEuxBa0.33Mn0.85Fe0.15O3(x = 0 和 0.1)多晶锰矿中磁致效应的比较分析:实验与理论测定结果对比
IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-07-20 DOI: 10.1007/s10832-024-00358-w
Aïda Ben Jazia Kharrat, Nassira Chniba-Boudjada, Wahiba Boujelben

This research study explores the magnetic and magnetocaloric properties of La0.67-xEuxBa0.33Mn0.85Fe0.15O3 (x = 0 and 0.1) magnetic compounds elaborated using the Sol–Gel method, based on a phenomenological approach proposed by Mahmoud Aly Hamad. The studied compounds exhibit a second-order ferromagnetic (FM) to paramagnetic (PM) transition with increasing temperature. A correlation between the experimental measurements and the theoretical analysis is established. Indeed, the value of the magnetocaloric effect was determined from the theoretical model based on magnetization as a function of temperature at several magnetic fields. Under an applied magnetic field of 5T, the absolute values of the maximum magnetic entropy change are evaluated at 0.92 and 0.60 J kg−1 K−1 for x = 0 and 0.1 respectively. This reduction may be attributed to a Curie temperature distribution implying also a decrease in the relative cooling power (RCP). The RCP and the specific heat capacity values are also estimated thanks to this model. The results predicted by this model allow us to propose these compounds as promising candidates for magnetic refrigeration.

本研究以 Mahmoud Aly Hamad 提出的现象学方法为基础,探讨了利用溶胶-凝胶法制备的 La0.67-xEuxBa0.33Mn0.85Fe0.15O3 (x = 0 和 0.1)磁性化合物的磁性和磁致性。随着温度的升高,所研究的化合物表现出二阶铁磁性(FM)向顺磁性(PM)的转变。实验测量与理论分析之间建立了相关性。事实上,磁致效应的值是根据磁化率与温度在不同磁场下的函数关系的理论模型确定的。在 5T 的外加磁场下,x = 0 和 0.1 时的最大磁熵变化绝对值分别为 0.92 和 0.60 J kg-1 K-1。这一下降可能归因于居里温度分布,也意味着相对冷却功率(RCP)的下降。该模型还估算了 RCP 和比热容值。根据该模型预测的结果,我们建议将这些化合物作为磁制冷的理想候选物质。
{"title":"Comparative analysis of magnetocaloric effect in La0.67-xEuxBa0.33Mn0.85Fe0.15O3 (x = 0 and 0.1) polycrystalline manganites: experimental vs. theoretical determination","authors":"Aïda Ben Jazia Kharrat, Nassira Chniba-Boudjada, Wahiba Boujelben","doi":"10.1007/s10832-024-00358-w","DOIUrl":"https://doi.org/10.1007/s10832-024-00358-w","url":null,"abstract":"<p>This research study explores the magnetic and magnetocaloric properties of La<sub>0.67-x</sub>Eu<sub>x</sub>Ba<sub>0.33</sub>Mn<sub>0.85</sub>Fe<sub>0.15</sub>O<sub>3</sub> (x = 0 and 0.1) magnetic compounds elaborated using the Sol–Gel method, based on a phenomenological approach proposed by Mahmoud Aly Hamad. The studied compounds exhibit a second-order ferromagnetic (FM) to paramagnetic (PM) transition with increasing temperature. A correlation between the experimental measurements and the theoretical analysis is established. Indeed, the value of the magnetocaloric effect was determined from the theoretical model based on magnetization as a function of temperature at several magnetic fields. Under an applied magnetic field of 5T, the absolute values of the maximum magnetic entropy change are evaluated at 0.92 and 0.60 J kg<sup>−1</sup> K<sup>−1</sup> for x = 0 and 0.1 respectively. This reduction may be attributed to a Curie temperature distribution implying also a decrease in the relative cooling power (RCP). The RCP and the specific heat capacity values are also estimated thanks to this model. The results predicted by this model allow us to propose these compounds as promising candidates for magnetic refrigeration.</p>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"19 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of phase structure and electrical properties of PMN-PSN-PNN–PZT ceramics with different PNN content 不同 PNN 含量的 PMN-PSN-PNN-PZT 陶瓷的相结构和电气性能研究
IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-07-18 DOI: 10.1007/s10832-024-00355-z
Tao Chu, Xingchen He, Tao Li, Jun Deng, Cailin Wang, Juping Xu, Aigen Huang

Piezoelectric ceramics, as an essential electronic material, are widely used in various actuators and ultrasonic transducers. In this study, piezoceramics in the formula Pb0.94Sr0.04Ba0.02(Mg1/3Nb2/3)0.025(Sb1/2Nb1/2)0.025(Ni1/3Nb2/3)x(Zr0.48Ti0.52)0.95−xO3 + 0.2wt%Li2CO3, where x = 0.21 − 0.17(abbreviated as PMN-PSN-xPNN-(0.95-x)PZT) were investigated. By changing the PNN content from 0.21 to 0.17, high piezoelectric coefficient d33 from 860 pC/N to 700 pC/N, high Curie temperature Tc from 137 ℃ to 168 ℃ were obtained. All the ceramics show excellent electrical properties. It is 15 − 20% better than PNN-PZT or doped PNN-PZT piezoelectric ceramics in certain aspects. What’s more, the ceramics also carry extraordinary electromechanical coupling factor kp (from 67 to 73%). Hence, this is an excellent candidate for actuators and transducers applications.

压电陶瓷作为一种重要的电子材料,被广泛应用于各种致动器和超声波传感器中。在这项研究中,压电陶瓷的化学式为 Pb0.94Sr0.04Ba0.02(Mg1/3Nb2/3)0.025(Sb1/2Nb1/2)0.025(Ni1/3Nb2/3)x(Zr0.48Ti0.52)0.95-xO3+0.2wt%Li2CO3,其中 x = 0.21 - 0.17(简称 PMN-PSN-xPNN-(0.95-x)PZT)。通过将 PNN 含量从 0.21 改为 0.17,获得了从 860 pC/N 到 700 pC/N 的高压电系数 d33,以及从 137 ℃ 到 168 ℃ 的高居里温度 Tc。所有陶瓷都具有优异的电气性能。在某些方面,它比 PNN-PZT 或掺杂 PNN-PZT 的压电陶瓷好 15 - 20%。此外,这些陶瓷还具有非凡的机电耦合系数 kp(从 67% 到 73%)。因此,这是致动器和传感器应用的绝佳候选材料。
{"title":"Investigation of phase structure and electrical properties of PMN-PSN-PNN–PZT ceramics with different PNN content","authors":"Tao Chu, Xingchen He, Tao Li, Jun Deng, Cailin Wang, Juping Xu, Aigen Huang","doi":"10.1007/s10832-024-00355-z","DOIUrl":"https://doi.org/10.1007/s10832-024-00355-z","url":null,"abstract":"<p>Piezoelectric ceramics, as an essential electronic material, are widely used in various actuators and ultrasonic transducers. In this study, piezoceramics in the formula Pb<sub>0.94</sub>Sr<sub>0.04</sub>Ba<sub>0.02</sub>(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)<sub>0.025</sub>(Sb<sub>1/2</sub>Nb<sub>1/2</sub>)<sub>0.025</sub>(Ni<sub>1/3</sub>Nb<sub>2/3</sub>)<sub>x</sub>(Zr<sub>0.48</sub>Ti<sub>0.52</sub>)<sub>0.95−x</sub>O<sub>3</sub> + 0.2wt%Li<sub>2</sub>CO<sub>3</sub>, where x = 0.21 − 0.17(abbreviated as PMN-PSN-xPNN-(0.95-x)PZT) were investigated. By changing the PNN content from 0.21 to 0.17, high piezoelectric coefficient <i>d</i><sub>33</sub> from 860 pC/N to 700 pC/N, high Curie temperature <i>T</i><sub>c</sub> from 137 ℃ to 168 ℃ were obtained. All the ceramics show excellent electrical properties. It is 15 − 20% better than PNN-PZT or doped PNN-PZT piezoelectric ceramics in certain aspects. What’s more, the ceramics also carry extraordinary electromechanical coupling factor <i>k</i><sub>p</sub> (from 67 to 73%). Hence, this is an excellent candidate for actuators and transducers applications.</p>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"51 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferroelectric stability and fatigue mechanism of BNKT ceramics by Nb doping 掺杂铌的 BNKT 陶瓷的铁电稳定性和疲劳机理
IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-07-17 DOI: 10.1007/s10832-024-00359-9
Binbin Chen, Yang Hu, Huazhang Zhang, Wen Chen, Jing Zhou

The fatigue behavior of Bi0.5Na0.4K0.1TiO3-based ceramics depends on the polarity. While the non-ergodic relaxor ceramics have large residual polarization but poor fatigue behavior, the ergodic relaxor ceramics have excellent fatigue resistance but tiny residual polarization. Therefore, obtaining ferroelectric ceramics with high residual polarization and excellent fatigue resistance is challenging due to the trade-off between non-ergodic relaxor and ergodic relaxor. Here, we modulate the free energy barrier by doping relaxant Nb to achieve the coexistence of non-ergodic and ergodic relaxor phases. At 0.6% Nb doping, the residual polarization is large at 2Pr = 49.3 µC/cm2, increased to 54.23 µC/cm2 after 102 cycles and decreased to 53.04 µC/cm2 after 105 cycles, indicating good fatigue resistance behavior. The large residual polarization is due to the metastable ferroelectric state, while the excellent fatigue resistance may be attributed to the field-induced ferroelectric-relaxor phase transition.

Bi0.5Na0.4K0.1TiO3 基陶瓷的疲劳行为取决于极性。非极性弛豫陶瓷具有较大的残余极化,但疲劳性能较差;而极性弛豫陶瓷具有出色的抗疲劳性能,但残余极化很小。因此,在非麦角弛豫器和麦角弛豫器之间进行权衡,获得具有高残余极化和优异抗疲劳性能的铁电陶瓷是一项挑战。在这里,我们通过掺杂弛豫剂铌来调节自由能垒,从而实现非极性弛豫相和极性弛豫相的共存。掺杂 0.6% Nb 时,残余极化在 2Pr = 49.3 µC/cm2 时较大,102 次循环后增至 54.23 µC/cm2,105 次循环后降至 53.04 µC/cm2,显示出良好的抗疲劳性能。残余极化大的原因是铁电态变,而出色的抗疲劳性能可能是由于场诱导的铁电-缓释相变。
{"title":"Ferroelectric stability and fatigue mechanism of BNKT ceramics by Nb doping","authors":"Binbin Chen, Yang Hu, Huazhang Zhang, Wen Chen, Jing Zhou","doi":"10.1007/s10832-024-00359-9","DOIUrl":"https://doi.org/10.1007/s10832-024-00359-9","url":null,"abstract":"<p>The fatigue behavior of Bi<sub>0.5</sub>Na<sub>0.4</sub>K<sub>0.1</sub>TiO<sub>3</sub>-based ceramics depends on the polarity. While the non-ergodic relaxor ceramics have large residual polarization but poor fatigue behavior, the ergodic relaxor ceramics have excellent fatigue resistance but tiny residual polarization. Therefore, obtaining ferroelectric ceramics with high residual polarization and excellent fatigue resistance is challenging due to the trade-off between non-ergodic relaxor and ergodic relaxor. Here, we modulate the free energy barrier by doping relaxant Nb to achieve the coexistence of non-ergodic and ergodic relaxor phases. At 0.6% Nb doping, the residual polarization is large at 2<i>P</i><sub><i>r</i></sub> = 49.3 µC/cm<sup>2</sup>, increased to 54.23 µC/cm<sup>2</sup> after 10<sup>2</sup> cycles and decreased to 53.04 µC/cm<sup>2</sup> after 10<sup>5</sup> cycles, indicating good fatigue resistance behavior. The large residual polarization is due to the metastable ferroelectric state, while the excellent fatigue resistance may be attributed to the field-induced ferroelectric-relaxor phase transition.</p>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"50 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141720257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of synthesis method on structural, microstructural, and magnetic properties of Bi0.5La0.5FeO3 ceramics 合成方法对 Bi0.5La0.5FeO3 陶瓷的结构、微观结构和磁性能的影响
IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-07-09 DOI: 10.1007/s10832-024-00356-y
Athava Simhadri, B. Durga Lakshmi, R. Jyothi, K. Sreenu, Ayman A. Ghfar, P. Rosaiah, K. S. K. R. Chandra Sekhar

(Bi0.5La0.5)FeO3 Orthoferrite ceramics were prepared by a conventional solid-state reaction method on a bulk scale and on a nano range by sol–gel auto combustion and Hydrothermal methods, respectively. The phase purity and crystallinity of the prepared ceramics have been examined by X–ray diffraction study. Broadening of the maximum intensity peak (hkl) and smaller crystallite size has been noticed in both chemical methods i.e., sol–gel and hydrothermal. Rietveld refinement confirmed the presence of orthorhombic symmetry with a space group (Pnma) for the ceramics synthesized through all three processes. The crystallite size, particle morphology, and grain microstructure formation mechanism were correlated for prepared ceramics with FESEM and XRD results. The influence of synthesis conditions on structure, microstructure, and magnetic studies has been studied. The M-H hysteresis loop study reflects that tuning of particles or crystallite size might induce a productive enhancement in magnetization response for chemically synthesized ceramics.

通过溶胶-凝胶自燃法和水热法,采用传统固态反应方法分别制备了块状和纳米级 (Bi0.5La0.5)FeO3 正铁陶瓷。通过 X 射线衍射研究检测了所制备陶瓷的相纯度和结晶度。在溶胶-凝胶和水热两种化学方法中,都发现最大强度峰 (hkl) 变宽,晶体尺寸变小。里特维尔德细化证实,通过所有三种工艺合成的陶瓷都具有正交对称性,空间群为 (Pnma)。所制备陶瓷的晶粒尺寸、颗粒形貌和晶粒微观结构形成机制与 FESEM 和 XRD 结果相关。研究了合成条件对结构、微观结构和磁性研究的影响。M-H 磁滞回线研究表明,颗粒或晶粒大小的调整可能会引起化学合成陶瓷磁化响应的有效增强。
{"title":"Influence of synthesis method on structural, microstructural, and magnetic properties of Bi0.5La0.5FeO3 ceramics","authors":"Athava Simhadri, B. Durga Lakshmi, R. Jyothi, K. Sreenu, Ayman A. Ghfar, P. Rosaiah, K. S. K. R. Chandra Sekhar","doi":"10.1007/s10832-024-00356-y","DOIUrl":"https://doi.org/10.1007/s10832-024-00356-y","url":null,"abstract":"<p>(Bi<sub>0.5</sub>La<sub>0.5</sub>)FeO<sub>3</sub> Orthoferrite ceramics were prepared by a conventional solid-state reaction method on a bulk scale and on a nano range by sol–gel auto combustion and Hydrothermal methods, respectively. The phase purity and crystallinity of the prepared ceramics have been examined by X–ray diffraction study. Broadening of the maximum intensity peak (hkl) and smaller crystallite size has been noticed in both chemical methods i.e., sol–gel and hydrothermal. Rietveld refinement confirmed the presence of orthorhombic symmetry with a space group <span>(Pnma)</span> for the ceramics synthesized through all three processes. The crystallite size, particle morphology, and grain microstructure formation mechanism were correlated for prepared ceramics with FESEM and XRD results. The influence of synthesis conditions on structure, microstructure, and magnetic studies has been studied. The M-H hysteresis loop study reflects that tuning of particles or crystallite size might induce a productive enhancement in magnetization response for chemically synthesized ceramics.</p>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"69 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature dependent dielectric mechanism of lead-free double perovskite Sr2YbNbO6 无铅双包晶 Sr2YbNbO6 随温度变化的介电机理
IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-07-05 DOI: 10.1007/s10832-024-00354-0
Arpita Barua, Sanjoy Kumar Dey, Sanjay Kumar

The double perovskite Sr2YbNbO6 (Strontium ytterbium niobium oxide, SYN) has been synthesized by solid-state ceramic processing technique. SYN crystallizes in monoclinic structure with P21/n space group. SYN is polycrystalline in nature with grain size ~ 2.38 μm. The Raman spectrum analysis of SYN reveals the presence of 24 Raman active modes. The bands associated with the bending and stretching vibrations of the YbO6 and NbO6 octahedra has been analysed using its FTIR spectrum. The optical band gap of SYN has been obtained to be 3.08 eV. The dielectric properties of the sample have been investigated in between 50 Hz to 1 MHz frequency and 303‒513 K temperature. The dielectric relaxation of SYN is polydispersive in nature and has been analysed using the Cole-Cole model. The activation energy of SYN is 0.52 eV which points towards the conduction associated with the hopping of p-type polaron.

通过固态陶瓷加工技术合成了双包晶 Sr2YbNbO6(锶镱铌氧化物,SYN)。SYN 呈单斜晶体结构,空间群为 P21/n。SYN 为多晶体,晶粒大小约为 2.38 μm。SYN 的拉曼光谱分析显示其存在 24 个拉曼活性模式。傅立叶红外光谱分析了与 YbO6 和 NbO6 八面体的弯曲和伸展振动相关的频带。得出 SYN 的光带隙为 3.08 eV。在 50 Hz 至 1 MHz 频率和 303-513 K 温度范围内对样品的介电性能进行了研究。SYN 的介电弛豫具有多分散性,并使用 Cole-Cole 模型进行了分析。SYN 的活化能为 0.52 eV,这表明传导与 p 型极子的跳变有关。
{"title":"Temperature dependent dielectric mechanism of lead-free double perovskite Sr2YbNbO6","authors":"Arpita Barua, Sanjoy Kumar Dey, Sanjay Kumar","doi":"10.1007/s10832-024-00354-0","DOIUrl":"https://doi.org/10.1007/s10832-024-00354-0","url":null,"abstract":"<p>The double perovskite Sr<sub>2</sub>YbNbO<sub>6</sub> (Strontium ytterbium niobium oxide, SYN) has been synthesized by solid-state ceramic processing technique. SYN crystallizes in monoclinic structure with <i>P</i>2<sub>1</sub><i>/n</i> space group. SYN is polycrystalline in nature with grain size ~ 2.38 μm. The Raman spectrum analysis of SYN reveals the presence of 24 Raman active modes. The bands associated with the bending and stretching vibrations of the YbO<sub>6</sub> and NbO<sub>6</sub> octahedra has been analysed using its FTIR spectrum. The optical band gap of SYN has been obtained to be 3.08 eV. The dielectric properties of the sample have been investigated in between 50 Hz to 1 MHz frequency and 303‒513 K temperature. The dielectric relaxation of SYN is polydispersive in nature and has been analysed using the Cole-Cole model. The activation energy of SYN is 0.52 eV which points towards the conduction associated with the hopping of p-type polaron.</p>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"70 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive study of structural, dielectric, electrical, thermal, and optical properties of Na/W co-doped BiMnO3 complex electroceramic; (Bi1/2Na1/2)(Mn1/2W1/2)O3 对 Na/W 共掺杂 BiMnO3 复合物电陶瓷;(Bi1/2Na1/2)(Mn1/2W1/2)O3 的结构、介电、电学、热学和光学特性的综合研究
IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-06-24 DOI: 10.1007/s10832-024-00347-z
Sudhansu Sekhar Hota, Debasish Panda, Monalisa Jena, Swayangshree Ojha, Ananya Samal, Ram Naresh Prasad Choudhary

In this report, we present the fabrication through the solid-state method and subsequent characterization (structural, electrical, optical, and thermal properties) of a lead-free Na/W modified complex BiMnO3 ceramic of a chemical composition (Bi1/2Na1/2)(Mn1/2W1/2)O3. The structural analysis, including the determination of structure and lattice parameters, was performed using X-ray diffraction data, revealing a monoclinic crystal structure of the material. Additional insights into its vibrational properties were obtained through Raman spectroscopy and Fourier Transform Infrared spectrum. The electronic behaviour of the prepared sample was investigated using photoluminescence (PL). Scanning electron microscope analysis revealed a uniform distribution of grains. The energy-dispersive X-ray study confirmed compositional uniformity. Furthermore, a comprehensive analysis of dielectric properties, impedance, modulus, and conductivity was carried out over a range of frequencies (1 kHz – 1 MHz) and temperatures (25 °C – 500 °C) to understand the Maxwell–Wagner type of dielectric dispersion, relaxation, and transport mechanisms. The Nyquist plots and the temperature-dependent conductivity data exhibited a negative temperature coefficient of resistance behavior. The modulus data indicated a scaling nature, indicative of non-Debye type relaxation. Additionally, the study of polarization with an electric field suggested the possibility of a ferroelectric behavior of the material.

在本报告中,我们介绍了一种化学成分为(Bi1/2Na1/2)(Mn1/2W1/2)O3的无铅 Na/W 改性复合 BiMnO3 陶瓷的固态制备方法及后续表征(结构、电学、光学和热学特性)。利用 X 射线衍射数据进行了结构分析,包括确定结构和晶格参数,发现该材料具有单斜晶体结构。通过拉曼光谱和傅立叶变换红外光谱对其振动特性进行了深入研究。利用光致发光(PL)研究了所制备样品的电子特性。扫描电子显微镜分析表明晶粒分布均匀。能量色散 X 射线研究证实了成分的均匀性。此外,还在频率(1 kHz - 1 MHz)和温度(25 °C - 500 °C)范围内对介电性质、阻抗、模量和电导率进行了全面分析,以了解麦克斯韦-瓦格纳类型的介电色散、弛豫和传输机制。奈奎斯特图和随温度变化的电导率数据显示出电阻行为的负温度系数。模量数据显示出一种缩放性质,表明存在非德拜类型的弛豫。此外,对电场极化的研究表明,该材料可能存在铁电行为。
{"title":"A comprehensive study of structural, dielectric, electrical, thermal, and optical properties of Na/W co-doped BiMnO3 complex electroceramic; (Bi1/2Na1/2)(Mn1/2W1/2)O3","authors":"Sudhansu Sekhar Hota, Debasish Panda, Monalisa Jena, Swayangshree Ojha, Ananya Samal, Ram Naresh Prasad Choudhary","doi":"10.1007/s10832-024-00347-z","DOIUrl":"https://doi.org/10.1007/s10832-024-00347-z","url":null,"abstract":"<p>In this report, we present the fabrication through the solid-state method and subsequent characterization (structural, electrical, optical, and thermal properties) of a lead-free Na/W modified complex BiMnO<sub>3</sub> ceramic of a chemical composition (Bi<sub>1/2</sub>Na<sub>1/2</sub>)(Mn<sub>1/2</sub>W<sub>1/2</sub>)O<sub>3</sub>. The structural analysis, including the determination of structure and lattice parameters, was performed using X-ray diffraction data, revealing a monoclinic crystal structure of the material. Additional insights into its vibrational properties were obtained through Raman spectroscopy and Fourier Transform Infrared spectrum. The electronic behaviour of the prepared sample was investigated using photoluminescence (PL). Scanning electron microscope analysis revealed a uniform distribution of grains. The energy-dispersive X-ray study confirmed compositional uniformity. Furthermore, a comprehensive analysis of dielectric properties, impedance, modulus, and conductivity was carried out over a range of frequencies (1 kHz – 1 MHz) and temperatures (25 °C – 500 °C) to understand the Maxwell–Wagner type of dielectric dispersion, relaxation, and transport mechanisms. The Nyquist plots and the temperature-dependent conductivity data exhibited a negative temperature coefficient of resistance behavior. The modulus data indicated a scaling nature, indicative of non-Debye type relaxation. Additionally, the study of polarization with an electric field suggested the possibility of a ferroelectric behavior of the material.</p>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"3 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of CoFe2O4 particle size on the development of in-situ phases and magnetic properties of ex-situ combustion derived ferrite-BaTiO3 composite CoFe2O4 粒径对原位燃烧衍生铁氧体-BaTiO3 复合材料的原位相发展和磁性能的影响
IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-06-12 DOI: 10.1007/s10832-024-00352-2
Sreenivasulu Pachari, S. K. Pratihar, Bibhuti Bishnu Nayak
{"title":"Influence of CoFe2O4 particle size on the development of in-situ phases and magnetic properties of ex-situ combustion derived ferrite-BaTiO3 composite","authors":"Sreenivasulu Pachari, S. K. Pratihar, Bibhuti Bishnu Nayak","doi":"10.1007/s10832-024-00352-2","DOIUrl":"https://doi.org/10.1007/s10832-024-00352-2","url":null,"abstract":"","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"108 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141352377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Electroceramics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1