Even-odd layer-dependent multiferroic in freestanding rare-earth orthorhombic perovskite

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Science China Physics, Mechanics & Astronomy Pub Date : 2024-06-13 DOI:10.1007/s11433-024-2372-8
Shaowen Xu, Fanhao Jia, Ning Dai
{"title":"Even-odd layer-dependent multiferroic in freestanding rare-earth orthorhombic perovskite","authors":"Shaowen Xu, Fanhao Jia, Ning Dai","doi":"10.1007/s11433-024-2372-8","DOIUrl":null,"url":null,"abstract":"<p>Freestanding oxide perovskites possess strong interlayer coupling between adjacent atomic layers, thus exerting a determinative effect on the magnetism and ferroelectricity of these atomic-scale materials. Here, we propose an effective strategy to manipulate magnetism and ferroelectricity in freestanding rare-earth orthorhombic perovskite via modulation of layer thickness. By performing first-principles calculations, an even-odd oscillation is demonstrated in few-layer GdAlO<sub>3</sub> perovskite (GAP). Specifically, odd-layer systems with charged atomic layers are ferromagnetic polar metals, while even-layer systems are antiferromagnetic ferroelectric semiconductors. This thickness-dependent magnetic phase transition originates from carrier doping, as rationalized by the Stoner criterion. Furthermore, we demonstrate the promotion of in-plane ferroelectricity via the concurrent application of two distinct antiferrodistortive displacements, each driven by formation and breaking of bonds. Analogous multiferroic phases may emerge in other transition metal oxide perovskites supporting multiple valence states, e.g., few-layer GdMO<sub>3</sub> (M = V, Cr, Mn, and Ni). This work puts forward a strategy for layer thickness engineering of magnetism and ferroelectricity in 2D oxide perovskite multiferroic materials.</p>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11433-024-2372-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Freestanding oxide perovskites possess strong interlayer coupling between adjacent atomic layers, thus exerting a determinative effect on the magnetism and ferroelectricity of these atomic-scale materials. Here, we propose an effective strategy to manipulate magnetism and ferroelectricity in freestanding rare-earth orthorhombic perovskite via modulation of layer thickness. By performing first-principles calculations, an even-odd oscillation is demonstrated in few-layer GdAlO3 perovskite (GAP). Specifically, odd-layer systems with charged atomic layers are ferromagnetic polar metals, while even-layer systems are antiferromagnetic ferroelectric semiconductors. This thickness-dependent magnetic phase transition originates from carrier doping, as rationalized by the Stoner criterion. Furthermore, we demonstrate the promotion of in-plane ferroelectricity via the concurrent application of two distinct antiferrodistortive displacements, each driven by formation and breaking of bonds. Analogous multiferroic phases may emerge in other transition metal oxide perovskites supporting multiple valence states, e.g., few-layer GdMO3 (M = V, Cr, Mn, and Ni). This work puts forward a strategy for layer thickness engineering of magnetism and ferroelectricity in 2D oxide perovskite multiferroic materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
独立稀土正交包晶中的偶数层依赖性多铁性
独立氧化物包晶石在相邻原子层之间具有很强的层间耦合,从而对这些原子尺度材料的磁性和铁电性产生决定性影响。在这里,我们提出了一种通过调节层厚度来操纵独立稀土正交包晶的磁性和铁电性的有效策略。通过第一性原理计算,我们在少层 GdAlO3 包晶石 (GAP) 中证明了偶数振荡。具体来说,带电原子层的奇数层系统是铁磁极性金属,而偶数层系统则是反铁磁铁电半导体。这种随厚度变化的磁性相变源于载流子掺杂,正如斯通纳准则所解释的那样。此外,我们还展示了通过同时应用两种不同的反铁磁性位移来促进面内铁电性,每种位移都由键的形成和断裂驱动。其他支持多价态的过渡金属氧化物包晶石也可能出现类似的多铁电相,例如少层 GdMO3(M = V、Cr、Mn 和 Ni)。这项研究提出了在二维氧化物包晶多铁性材料中进行磁性和铁电性层厚工程的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
期刊最新文献
Al1−xScxSbyN1−y: An opportunity for ferroelectric semiconductor field effect transistor Synthesis and optical properties of high-quality ultrathin homogeneous GaAs1−xSbx nanowires Three-dimensional magnetization reconstruction from electron optical phase images with physical constraints Annealing-induced long-range charge density wave order in magnetic kagome FeGe: Fluctuations and disordered structure Establishing HI mass vs. stellar mass and halo mass scaling relations using an abundance matching method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1