{"title":"Research on the Virtual–real Interaction System and Interaction Characteristics of a Single-leg of Quadruped Robots Based on Digital Twin","authors":"Yuhan Dou, Hujiang Wang, Bing Wu, Jiandong Cao, Jinzhu Zhang","doi":"10.1007/s42235-024-00573-9","DOIUrl":null,"url":null,"abstract":"<div><p>Quadruped robots which have flexibility and load-bearing capacity, are regarded as the best mobile platform for remote operation in unstructured and restricted environments. In the process of remote operation of quadruped robots, their status is inevitably influenced by complex environments. To monitor the robot's real-time operation status and make necessary adjustments, this paper focuses on the single-leg of a quadruped robot, proposes a single-leg virtual–real interaction system based on Digital Twin, and studies its virtual–real interaction characteristics. The virtual–reality interaction system contains single-leg physical entity, single-leg virtual model, control system, data service system and communication system, enabling interactive applications for single-leg visual state monitoring and real-time control optimization. This paper creates a high-fidelity model based on the physical entity; provides a system performance analysis method based on the system framework; analyzes virtual–real interaction delay based on communication scheme; conducts stand and jump test based on the single-leg mathematical model and analyzes the interaction characteristics under position/force control. This system provides new insights for real-time monitoring and control optimization of quadruped robots.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 5","pages":"2215 - 2231"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42235-024-00573-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00573-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quadruped robots which have flexibility and load-bearing capacity, are regarded as the best mobile platform for remote operation in unstructured and restricted environments. In the process of remote operation of quadruped robots, their status is inevitably influenced by complex environments. To monitor the robot's real-time operation status and make necessary adjustments, this paper focuses on the single-leg of a quadruped robot, proposes a single-leg virtual–real interaction system based on Digital Twin, and studies its virtual–real interaction characteristics. The virtual–reality interaction system contains single-leg physical entity, single-leg virtual model, control system, data service system and communication system, enabling interactive applications for single-leg visual state monitoring and real-time control optimization. This paper creates a high-fidelity model based on the physical entity; provides a system performance analysis method based on the system framework; analyzes virtual–real interaction delay based on communication scheme; conducts stand and jump test based on the single-leg mathematical model and analyzes the interaction characteristics under position/force control. This system provides new insights for real-time monitoring and control optimization of quadruped robots.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.