{"title":"Heterogeneous Unknown Multiagent Systems of Different Relative Degrees: A Distributed Optimal Coordination Design","authors":"Hossein Noorighanavati Zadeh;Reza Naseri;Mohammad Bagher Menhaj;Amir Abolfazl Suratgar","doi":"10.1109/JSYST.2024.3417255","DOIUrl":null,"url":null,"abstract":"This study delves into the distributed optimal coordination (DOC) problem, where a network comprises agents with different relative degrees. Each agent is equipped with a private cost function. The goal is to steer these agents towards minimizing the global cost function, which aggregates their individual costs. Existing literature often leans on known agent dynamics, which may not faithfully represent real-world scenarios. To bridge this gap, we delve into the DOC problem within a network of linear time-invariant (LTI) agents, where the system matrices remain entirely unknown. Our proposed solution introduces a novel distributed two-layer control policy: the top layer endeavors to find the minimizer and generates tailored reference signals for each agent, while the bottom layer equips each agent with an adaptive controller to track these references. Key assumptions include strongly convex private cost functions with local Lipschitz gradients. Under these conditions, our control policy guarantees asymptotic consensus on the global minimizer within the network. Moreover, the control policy operates fully distributedly, relying solely on private and neighbor information for execution. Theoretical insights are substantiated through simulations, encompassing both numerical and practical examples involving speed control of a multimotor network, thereby affirming the efficacy of our approach in practical settings.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 3","pages":"1570-1580"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10579057/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study delves into the distributed optimal coordination (DOC) problem, where a network comprises agents with different relative degrees. Each agent is equipped with a private cost function. The goal is to steer these agents towards minimizing the global cost function, which aggregates their individual costs. Existing literature often leans on known agent dynamics, which may not faithfully represent real-world scenarios. To bridge this gap, we delve into the DOC problem within a network of linear time-invariant (LTI) agents, where the system matrices remain entirely unknown. Our proposed solution introduces a novel distributed two-layer control policy: the top layer endeavors to find the minimizer and generates tailored reference signals for each agent, while the bottom layer equips each agent with an adaptive controller to track these references. Key assumptions include strongly convex private cost functions with local Lipschitz gradients. Under these conditions, our control policy guarantees asymptotic consensus on the global minimizer within the network. Moreover, the control policy operates fully distributedly, relying solely on private and neighbor information for execution. Theoretical insights are substantiated through simulations, encompassing both numerical and practical examples involving speed control of a multimotor network, thereby affirming the efficacy of our approach in practical settings.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.