Battery waste-derived functional materials for the capture and removal of harmful gases

IF 3.5 Q3 ENGINEERING, ENVIRONMENTAL Environmental science. Advances Pub Date : 2024-06-18 DOI:10.1039/D4VA00140K
Nishesh Kumar Gupta
{"title":"Battery waste-derived functional materials for the capture and removal of harmful gases","authors":"Nishesh Kumar Gupta","doi":"10.1039/D4VA00140K","DOIUrl":null,"url":null,"abstract":"<p >The persistent use of primary alkaline batteries in electronic gadgets and lithium-ion batteries in electric vehicles is creating a large volume of battery waste. Proper management and processing are necessary to prevent the dumping of used batteries in landfills. Valuable metals such as lithium, cobalt, nickel, and zinc can be extracted and purified from spent batteries. Alternatively, they can be used in synthesising functional materials. This review explores a promising solution for battery waste management by repurposing it to create materials capable of removing harmful gases. Reusing battery components such as electrodes, electrolytes, and polymer separators leads to the development of innovative strategies for creating adsorbents and catalysts. These materials are capable of efficiently capturing or catalysing harmful gases into harmless gases or ions. The review outlines various methods for converting battery waste into valuable materials, structural modifications, performance evaluations, and underlying mechanisms responsible for the removal of harmful gases. This review highlights the potential of battery waste as a sustainable resource for addressing rising air pollution and promoting a circular economy.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00140k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science. Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/va/d4va00140k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The persistent use of primary alkaline batteries in electronic gadgets and lithium-ion batteries in electric vehicles is creating a large volume of battery waste. Proper management and processing are necessary to prevent the dumping of used batteries in landfills. Valuable metals such as lithium, cobalt, nickel, and zinc can be extracted and purified from spent batteries. Alternatively, they can be used in synthesising functional materials. This review explores a promising solution for battery waste management by repurposing it to create materials capable of removing harmful gases. Reusing battery components such as electrodes, electrolytes, and polymer separators leads to the development of innovative strategies for creating adsorbents and catalysts. These materials are capable of efficiently capturing or catalysing harmful gases into harmless gases or ions. The review outlines various methods for converting battery waste into valuable materials, structural modifications, performance evaluations, and underlying mechanisms responsible for the removal of harmful gases. This review highlights the potential of battery waste as a sustainable resource for addressing rising air pollution and promoting a circular economy.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于捕获和去除有害气体的电池废料衍生功能材料
电子产品中长期使用的碱性原电池和电动汽车中使用的锂离子电池正在产生大量的电池废物。为了防止将废旧电池丢弃到垃圾填埋场,必须进行适当的管理和处理。锂、钴、镍和锌等贵重金属可以从废电池中提取和提纯。此外,它们还可用于合成功能材料。这篇综述探讨了电池废物管理的一种可行解决方案,即通过重新利用电池来制造能够去除有害气体的材料。对电池组件(如电极、电解质和聚合物隔膜)的再利用有助于开发出创新的吸附剂和催化剂。这些材料能够有效地捕捉有害气体或将其催化为无害气体或离子。本综述概述了将电池废料转化为有价值材料的各种方法、结构改造、性能评估以及去除有害气体的基本机制。这篇综述强调了电池废料作为一种可持续资源,在解决日益严重的空气污染和促进循环经济方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊最新文献
Laccase-Mediated Degradation of Emergent Contaminants: Unveiling a Sustainable Solution A brief review on flue gas desulfurization gypsum recovery toward calcium carbonate preparation Advancements in Visible Light-Driven Micro/nanomotors for Photodegradation of Environmental Pollutants Impacts of biochar and slag on carbon sequestration potential and sustainability assessment of MgO-stabilized marine soils: insights from MIP analysis Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1