{"title":"An optimized secure cluster-based routing protocol for IoT-based WSN structures in smart agriculture with blockchain-based integrity checking","authors":"Ashutosh Kumar Rao, Kapil Kumar Nagwanshi, Manoj Kumar Shukla","doi":"10.1007/s12083-024-01748-1","DOIUrl":null,"url":null,"abstract":"<p>In the context of Internet of Things (IoT)-based Wireless Sensor Networks (WSNs) for smart agriculture, ensuring efficient resource utilization, prolonged network lifespan and robust security mechanisms is paramount. This paper addresses these challenges by introducing an optimized secure cluster-based routing protocol with blockchain. The algorithm initiates with node ID assignment, followed by the use of Distributed Fuzzy Cognitive Maps (DFCM) to select Cluster Heads (CHs) based on energy, proximity to the Base Station (BS) and neighbor count. DFCM aims for balanced CH distribution to optimize energy usage. The secure routing protocol, employing Earthworm-based Deer Hunting Optimization Algorithm (EW-DHOA) and blockchain, ensures reliable data transmission. Through extensive comparative analyses with existing techniques, including GA-PSO, CI-ROA, ACI-GSO and P-WWO, our approach consistently outperforms in critical parameters. At varying node densities, the proposed method demonstrates a substantial improvement in network lifetime, achieving a 60% increase over GA-PSO and maintaining a superior average of 3200 rounds. Energy consumption is notably reduced, with a 33.3% improvement compared to GA-PSO at a density of 100 nodes. The packet delivery ratio reaches 98%, showcasing a 4% enhancement over the best-performing existing technique P-WWO. Throughput at a density of 500 nodes achieves an impressive 33.3% increase, reaching 0.8 Mbps. Notably, our methodology excels in preserving active nodes, sustaining a network lifetime of 66.7% more than competing techniques at the 3500th round. The proposed approach demonstrates a higher detection rate, ranging from 75% to 90% and exhibits a significantly higher convergence rate. Therefore, our Optimized Secure Cluster-Based Routing Protocol with Blockchain-Based Integrity Checking presents a comprehensive and superior solution for enhancing the efficiency, resilience and security of WSNs in smart agriculture.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"342 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01748-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of Internet of Things (IoT)-based Wireless Sensor Networks (WSNs) for smart agriculture, ensuring efficient resource utilization, prolonged network lifespan and robust security mechanisms is paramount. This paper addresses these challenges by introducing an optimized secure cluster-based routing protocol with blockchain. The algorithm initiates with node ID assignment, followed by the use of Distributed Fuzzy Cognitive Maps (DFCM) to select Cluster Heads (CHs) based on energy, proximity to the Base Station (BS) and neighbor count. DFCM aims for balanced CH distribution to optimize energy usage. The secure routing protocol, employing Earthworm-based Deer Hunting Optimization Algorithm (EW-DHOA) and blockchain, ensures reliable data transmission. Through extensive comparative analyses with existing techniques, including GA-PSO, CI-ROA, ACI-GSO and P-WWO, our approach consistently outperforms in critical parameters. At varying node densities, the proposed method demonstrates a substantial improvement in network lifetime, achieving a 60% increase over GA-PSO and maintaining a superior average of 3200 rounds. Energy consumption is notably reduced, with a 33.3% improvement compared to GA-PSO at a density of 100 nodes. The packet delivery ratio reaches 98%, showcasing a 4% enhancement over the best-performing existing technique P-WWO. Throughput at a density of 500 nodes achieves an impressive 33.3% increase, reaching 0.8 Mbps. Notably, our methodology excels in preserving active nodes, sustaining a network lifetime of 66.7% more than competing techniques at the 3500th round. The proposed approach demonstrates a higher detection rate, ranging from 75% to 90% and exhibits a significantly higher convergence rate. Therefore, our Optimized Secure Cluster-Based Routing Protocol with Blockchain-Based Integrity Checking presents a comprehensive and superior solution for enhancing the efficiency, resilience and security of WSNs in smart agriculture.
期刊介绍:
The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security.
The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain.
Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.