Core Reversal in Vertically Coupled Vortices: Simulation and Experimental Study

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nanotechnology Pub Date : 2024-06-28 DOI:10.1109/TNANO.2024.3420249
Abbass Hamadeh;Abbas Koujok;Salvatore Perna;Davi R. Rodrigues;Alejandro Riveros;Vitaliy Lomakin;Giovanni Finocchio;Grégoire de Loubens;Olivier Klein;Philipp Pirro
{"title":"Core Reversal in Vertically Coupled Vortices: Simulation and Experimental Study","authors":"Abbass Hamadeh;Abbas Koujok;Salvatore Perna;Davi R. Rodrigues;Alejandro Riveros;Vitaliy Lomakin;Giovanni Finocchio;Grégoire de Loubens;Olivier Klein;Philipp Pirro","doi":"10.1109/TNANO.2024.3420249","DOIUrl":null,"url":null,"abstract":"This study conducts a comprehensive investigation into the reversal mechanism of magnetic vortex cores in a nanopillar system composed of two coupled ferromagnetic dots under zero magnetic field conditions. The research employs a combination of experimental and simulation methods to gain a deeper understanding of the dynamics of magnetic vortex cores. The findings reveal that by applying a constant direct current, the orientation of the vortex cores can be manipulated, resulting in a switch in one of the dots at a specific current value. The micromagnetic simulations provide evidence that this switch is a consequence of a deformation in the vortex profile caused by the increasing velocity of the vortex cores resulting from the constant amplitude of the trajectory as frequency increases. These findings offer valuable new insights into the coupled dynamics of magnetic vortex cores and demonstrate the feasibility of manipulating their orientation using direct currents under zero magnetic field conditions. The results of this study have potential implications for the development of vortex-based non-volatile memory technologies.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"549-553"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10577190/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study conducts a comprehensive investigation into the reversal mechanism of magnetic vortex cores in a nanopillar system composed of two coupled ferromagnetic dots under zero magnetic field conditions. The research employs a combination of experimental and simulation methods to gain a deeper understanding of the dynamics of magnetic vortex cores. The findings reveal that by applying a constant direct current, the orientation of the vortex cores can be manipulated, resulting in a switch in one of the dots at a specific current value. The micromagnetic simulations provide evidence that this switch is a consequence of a deformation in the vortex profile caused by the increasing velocity of the vortex cores resulting from the constant amplitude of the trajectory as frequency increases. These findings offer valuable new insights into the coupled dynamics of magnetic vortex cores and demonstrate the feasibility of manipulating their orientation using direct currents under zero magnetic field conditions. The results of this study have potential implications for the development of vortex-based non-volatile memory technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
垂直耦合涡流中的核心逆转:模拟与实验研究
本研究对零磁场条件下由两个耦合铁磁点组成的纳米柱系统中磁性涡核的逆转机制进行了全面研究。研究采用了实验和模拟相结合的方法,以深入了解磁涡核的动力学特性。研究结果表明,通过施加恒定的直流电,可以操纵涡核的取向,从而使其中一个点在特定电流值下发生切换。微磁模拟提供的证据表明,这种切换是涡旋轮廓变形的结果,其原因是随着频率的增加,涡旋轨迹的恒定振幅导致涡旋核心的速度不断增加。这些发现为了解磁性涡核的耦合动力学提供了宝贵的新见解,并证明了在零磁场条件下使用直流操纵其方向的可行性。这项研究的结果对开发基于涡旋的非易失性存储器技术具有潜在的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
期刊最新文献
High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks Design of a Graphene Based Terahertz Perfect Metamaterial Absorber With Multiple Sensing Performance Modeling and Simulation of Correlated Cycle-to- Cycle Variability in the Current-Voltage Hysteresis Loops of RRAM Devices Impact of Electron and Hole Trap Profiles in BE-TOX on Retention Characteristics of 3D NAND Flash Memory Full 3-D Monte Carlo Simulation of Coupled Electron-Phonon Transport: Self-Heating in a Nanoscale FinFET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1