Ultrathin skin-conformable electrodes with high water vapor permeability and stretchability characteristics composed of single-walled carbon nanotube networks assembled on elastomeric films
Tatsuhiro Horii, Kai Yamashita, Marimo Ito, Kei Okada, Toshinori Fujie
{"title":"Ultrathin skin-conformable electrodes with high water vapor permeability and stretchability characteristics composed of single-walled carbon nanotube networks assembled on elastomeric films","authors":"Tatsuhiro Horii, Kai Yamashita, Marimo Ito, Kei Okada, Toshinori Fujie","doi":"10.1038/s41427-024-00553-9","DOIUrl":null,"url":null,"abstract":"Herein, we report on conductive ultrathin films (nanosheets) with the characteristics of stretchability and water vapor permeability for skin-conformable bioelectrodes. The films are fabricated by combining conductive fibrous networks of single-wall carbon nanotubes (SWCNTs) and poly(styrene-b-butadiene-b-styrene) (SBS) nanosheets (i.e., SWCNT-SBS nanosheets). An increase in the number of SWCNT coatings increases both the thicknesses and densities of the SWCNT bundles. The SBS nanosheets coated with three layers of SWCNTs (i.e., SWCNT 3rd-SBS nanosheets) show comparable sheet resistance to the SBS nanosheets coated with poly(3,4-ethylenedioxithiophene) doped with poly(4-styrenesulfonate acid) (PEDOT:PSS) containing 5 wt.% butylene glycol (i.e., PEDOT:PSS/BG5-SBS nanosheets). In addition, the SWCNT 3rd-SBS nanosheets exhibit significantly reduced elastic moduli and increased elongations at break compared to the PEDOT:PSS/BG5-SBS nanosheets. Furthermore, the calculated water vapor transmission ratio of the 210-nm-thick SBS nanosheets (268,172 g m−2 (2 h)−1) is greater than that of the filter paper (6345 g m−2 (2 h)−1). The SWCNT 3rd-SBS nanosheets attached to model skin show high tolerances to bending and artificial sweat at different pH values (i.e., the electrical resistance changes ~1.1 times). Finally, the SWCNT 3rd-SBS nanosheet is applied to detect the surface electromyogram from the forearm of a subject. This nanosheet displays a signal-to-noise ratio similar to that of the PEDOT:PSS/BG5-SBS nanosheet. We report on conductive ultrathin films (referred to as “nanosheets”) with stretchability and water vapor permeability for skin-conformable bioelectrodes. By combining conductive fibrous networks of single-wall carbon nanotubes and poly(styrene-b-butadiene-b-styrene) continuous nanosheets (i.e., SWCNT-SBS nanosheets), the conductive nanosheet shows a high tolerance to bending on a model skin sheet and a high permeability to humidity. Finally, we demonstrate that the conductive nanosheet can detect the surface electromyogram signals from a subject’s forearm.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-13"},"PeriodicalIF":8.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00553-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-024-00553-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we report on conductive ultrathin films (nanosheets) with the characteristics of stretchability and water vapor permeability for skin-conformable bioelectrodes. The films are fabricated by combining conductive fibrous networks of single-wall carbon nanotubes (SWCNTs) and poly(styrene-b-butadiene-b-styrene) (SBS) nanosheets (i.e., SWCNT-SBS nanosheets). An increase in the number of SWCNT coatings increases both the thicknesses and densities of the SWCNT bundles. The SBS nanosheets coated with three layers of SWCNTs (i.e., SWCNT 3rd-SBS nanosheets) show comparable sheet resistance to the SBS nanosheets coated with poly(3,4-ethylenedioxithiophene) doped with poly(4-styrenesulfonate acid) (PEDOT:PSS) containing 5 wt.% butylene glycol (i.e., PEDOT:PSS/BG5-SBS nanosheets). In addition, the SWCNT 3rd-SBS nanosheets exhibit significantly reduced elastic moduli and increased elongations at break compared to the PEDOT:PSS/BG5-SBS nanosheets. Furthermore, the calculated water vapor transmission ratio of the 210-nm-thick SBS nanosheets (268,172 g m−2 (2 h)−1) is greater than that of the filter paper (6345 g m−2 (2 h)−1). The SWCNT 3rd-SBS nanosheets attached to model skin show high tolerances to bending and artificial sweat at different pH values (i.e., the electrical resistance changes ~1.1 times). Finally, the SWCNT 3rd-SBS nanosheet is applied to detect the surface electromyogram from the forearm of a subject. This nanosheet displays a signal-to-noise ratio similar to that of the PEDOT:PSS/BG5-SBS nanosheet. We report on conductive ultrathin films (referred to as “nanosheets”) with stretchability and water vapor permeability for skin-conformable bioelectrodes. By combining conductive fibrous networks of single-wall carbon nanotubes and poly(styrene-b-butadiene-b-styrene) continuous nanosheets (i.e., SWCNT-SBS nanosheets), the conductive nanosheet shows a high tolerance to bending on a model skin sheet and a high permeability to humidity. Finally, we demonstrate that the conductive nanosheet can detect the surface electromyogram signals from a subject’s forearm.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.