The Implications of Thermal Hydrodynamic Atmospheric Escape on the TRAPPIST-1 Planets

IF 3.8 Q2 ASTRONOMY & ASTROPHYSICS The Planetary Science Journal Pub Date : 2024-06-11 DOI:10.3847/psj/ad4454
Megan T. Gialluca, Rory Barnes, Victoria S. Meadows, Rodolfo Garcia, Jessica Birky, Eric Agol
{"title":"The Implications of Thermal Hydrodynamic Atmospheric Escape on the TRAPPIST-1 Planets","authors":"Megan T. Gialluca, Rory Barnes, Victoria S. Meadows, Rodolfo Garcia, Jessica Birky, Eric Agol","doi":"10.3847/psj/ad4454","DOIUrl":null,"url":null,"abstract":"JWST observations of the seven-planet TRAPPIST-1 system will provide an excellent opportunity to test outcomes of stellar-driven evolution of terrestrial planetary atmospheres, including atmospheric escape, ocean loss, and abiotic oxygen production. While most previous studies use a single luminosity evolution for the host star, we incorporate observational uncertainties in stellar mass, luminosity evolution, system age, and planetary parameters to statistically explore the plausible range of planetary atmospheric escape outcomes. We present probabilistic distributions of total water loss and oxygen production as a function of initial water content, for planets with initially pure water atmospheres and no interior–atmosphere exchange. We find that the interior planets are desiccated for initial water contents below 50 Earth oceans. For TRAPPIST-1e, f, g, and h, we report maximum water-loss ranges of <inline-formula>\n<tex-math>\n<?CDATA ${8.0}_{-0.9}^{+1.3}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mn>8.0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.9</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>1.3</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"psjad4454ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, <inline-formula>\n<tex-math>\n<?CDATA ${4.8}_{-0.4}^{+0.6}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mn>4.8</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.4</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.6</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"psjad4454ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, <inline-formula>\n<tex-math>\n<?CDATA ${3.4}_{-0.3}^{+0.3}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mn>3.4</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.3</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.3</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"psjad4454ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, and <inline-formula>\n<tex-math>\n<?CDATA ${0.8}_{-0.1}^{+0.2}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mn>0.8</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.1</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.2</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"psjad4454ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> Earth oceans, respectively, with corresponding maximum oxygen retention of <inline-formula>\n<tex-math>\n<?CDATA ${1290}_{-75}^{+75}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mn>1290</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>75</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>75</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"psjad4454ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, <inline-formula>\n<tex-math>\n<?CDATA ${800}_{-40}^{+40}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mn>800</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>40</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>40</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"psjad4454ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, <inline-formula>\n<tex-math>\n<?CDATA ${560}_{-25}^{+30}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mn>560</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>25</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>30</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"psjad4454ieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, and <inline-formula>\n<tex-math>\n<?CDATA ${90}_{-10}^{+10}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mn>90</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>10</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"psjad4454ieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> bars. We explore statistical constraints on initial water content imposed by current water content, which could inform evolutionary history and planet formation. If TRAPPIST-1b is airless while TRAPPIST-1c possesses a tenuous oxygen atmosphere, as initial JWST observations suggest, then our models predict an initial surface water content of 8.2<inline-formula>\n<tex-math>\n<?CDATA ${}_{-1.0}^{+1.5}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1.0</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>1.5</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"psjad4454ieqn9.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> Earth oceans for these worlds, leading to the outer planets retaining &gt;1.5 Earth oceans after entering the habitable zone. Even if TRAPPIST-1c is airless, surface water on the outer planets would not be precluded.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Planetary Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/psj/ad4454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

JWST observations of the seven-planet TRAPPIST-1 system will provide an excellent opportunity to test outcomes of stellar-driven evolution of terrestrial planetary atmospheres, including atmospheric escape, ocean loss, and abiotic oxygen production. While most previous studies use a single luminosity evolution for the host star, we incorporate observational uncertainties in stellar mass, luminosity evolution, system age, and planetary parameters to statistically explore the plausible range of planetary atmospheric escape outcomes. We present probabilistic distributions of total water loss and oxygen production as a function of initial water content, for planets with initially pure water atmospheres and no interior–atmosphere exchange. We find that the interior planets are desiccated for initial water contents below 50 Earth oceans. For TRAPPIST-1e, f, g, and h, we report maximum water-loss ranges of 8.00.9+1.3 , 4.80.4+0.6 , 3.40.3+0.3 , and 0.80.1+0.2 Earth oceans, respectively, with corresponding maximum oxygen retention of 129075+75 , 80040+40 , 56025+30 , and 9010+10 bars. We explore statistical constraints on initial water content imposed by current water content, which could inform evolutionary history and planet formation. If TRAPPIST-1b is airless while TRAPPIST-1c possesses a tenuous oxygen atmosphere, as initial JWST observations suggest, then our models predict an initial surface water content of 8.2 1.0+1.5 Earth oceans for these worlds, leading to the outer planets retaining >1.5 Earth oceans after entering the habitable zone. Even if TRAPPIST-1c is airless, surface water on the outer planets would not be precluded.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热流体动力大气逃逸对 TRAPPIST-1 行星的影响
JWST 对七大行星 TRAPPIST-1 系统的观测将为检验恒星驱动的陆地行星大气演化结果(包括大气逃逸、海洋损失和非生物氧气产生)提供一个绝佳的机会。以往的研究大多使用单一的主恒星光度演化,而我们结合了恒星质量、光度演化、系统年龄和行星参数方面的观测不确定性,从统计学角度探讨了行星大气逃逸结果的合理范围。我们提出了最初为纯水大气且没有内部大气交换的行星的总水损失和氧气产生的概率分布,作为初始水含量的函数。我们发现,当初始含水量低于 50 个地球海洋时,行星内部会出现干燥现象。对于 TRAPPIST-1e、f、g 和 h,我们报告的最大失水范围分别为 8.0-0.9+1.3、4.8-0.4+0.6、3.4-0.3+0.3 和 0.8-0.1+0.2 地球大洋,相应的最大氧气保留量分别为 1290-75+75、800-40+40、560-25+30 和 90-10+10 巴。我们探讨了当前水含量对初始水含量的统计约束,这可以为进化历史和行星形成提供信息。如果TRAPPIST-1b没有空气,而TRAPPIST-1c拥有微弱的氧气大气层,正如JWST的初步观测结果所表明的那样,那么我们的模型预测这些世界的初始地表水含量为8.2-1.0+1.5个地球海洋,这将导致外行星在进入宜居带后保留>1.5个地球海洋。即使TRAPPIST-1c没有空气,也不排除外行星表面有水的可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Planetary Science Journal
The Planetary Science Journal Earth and Planetary Sciences-Geophysics
CiteScore
5.20
自引率
0.00%
发文量
249
审稿时长
15 weeks
期刊最新文献
Jovian Vortex Hunter: A Citizen Science Project to Study Jupiter’s Vortices Experimental Method for Measuring Cohesion of Regolith via Electrostatic Lofting Mid-infrared Measurements of Ion-irradiated Carbonaceous Meteorites: How to Better Detect Space Weathering Effects Triton’s Captured Youth: Tidal Heating Kept Triton Warm and Active for Billions of Years The Global Distribution of Water and Hydroxyl on the Moon as Seen by the Moon Mineralogy Mapper (M3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1