Viviana Ceccarelli, Tobias Fremout, Eduardo Chavez, David Argüello, Rey Gastón Loor Solórzano, Ignacio Antonio Sotomayor Cantos, Evert Thomas
{"title":"Vulnerability to climate change of cultivated and wild cacao in Ecuador","authors":"Viviana Ceccarelli, Tobias Fremout, Eduardo Chavez, David Argüello, Rey Gastón Loor Solórzano, Ignacio Antonio Sotomayor Cantos, Evert Thomas","doi":"10.1007/s10584-024-03756-9","DOIUrl":null,"url":null,"abstract":"<p>Climate change is expected to impact cacao cultivation in Ecuador, the fifth largest cacao producing country in the world and largest exporter of fine flavour cacao. The objective of this study was to evaluate the future impact of climate change on the suitable distribution of cultivated and wild cacao and identify areas where climate change tolerant genotypes may occur in Ecuador. Using 26,152 presence points for cultivated cacao and 95 presence points for wild cacao, we modelled the present suitability distribution of cultivated and wild cacao and performed future climate projections under two greenhouse gas emission scenarios (SSP2-4.5 and SSP3-7.0) and two time periods (2050s and 2070s). For both cultivated and wild cacao, we constructed six different ensemble models employing different filtering methods for presence points, we projected each ensemble model to future climatic conditions, and we then built the final maps of present distribution and future projections based on the majority-vote criterion. Our future projections predict a 8–16% contraction and 19–21% expansion of the currently suitable area of cultivated cacao, while wild cacao is expected to maintain most of its suitable area and experience a further 7–12% expansion in the future. Ecogeographical zones are predicted to change in 23-33% of the combined distributions of cultivated and wild cacao. We identified the areas in Ecuador where populations of climate change tolerant genotypes are expected to occur. Interventions to promote adaptation to climate change will be required in cacao cultivation areas that are expected to be impacted by climate change in Ecuador, including the use of tolerant genotypes.</p>","PeriodicalId":10372,"journal":{"name":"Climatic Change","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climatic Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10584-024-03756-9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change is expected to impact cacao cultivation in Ecuador, the fifth largest cacao producing country in the world and largest exporter of fine flavour cacao. The objective of this study was to evaluate the future impact of climate change on the suitable distribution of cultivated and wild cacao and identify areas where climate change tolerant genotypes may occur in Ecuador. Using 26,152 presence points for cultivated cacao and 95 presence points for wild cacao, we modelled the present suitability distribution of cultivated and wild cacao and performed future climate projections under two greenhouse gas emission scenarios (SSP2-4.5 and SSP3-7.0) and two time periods (2050s and 2070s). For both cultivated and wild cacao, we constructed six different ensemble models employing different filtering methods for presence points, we projected each ensemble model to future climatic conditions, and we then built the final maps of present distribution and future projections based on the majority-vote criterion. Our future projections predict a 8–16% contraction and 19–21% expansion of the currently suitable area of cultivated cacao, while wild cacao is expected to maintain most of its suitable area and experience a further 7–12% expansion in the future. Ecogeographical zones are predicted to change in 23-33% of the combined distributions of cultivated and wild cacao. We identified the areas in Ecuador where populations of climate change tolerant genotypes are expected to occur. Interventions to promote adaptation to climate change will be required in cacao cultivation areas that are expected to be impacted by climate change in Ecuador, including the use of tolerant genotypes.
期刊介绍:
Climatic Change is dedicated to the totality of the problem of climatic variability and change - its descriptions, causes, implications and interactions among these. The purpose of the journal is to provide a means of exchange among those working in different disciplines on problems related to climatic variations. This means that authors have an opportunity to communicate the essence of their studies to people in other climate-related disciplines and to interested non-disciplinarians, as well as to report on research in which the originality is in the combinations of (not necessarily original) work from several disciplines. The journal also includes vigorous editorial and book review sections.