{"title":"A genetic algorithm-based virtual machine scheduling algorithm for energy-efficient resource management in cloud computing","authors":"Feng Shi","doi":"10.1002/cpe.8207","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To address the unbalanced resource load of a virtual machine cluster, the author proposes an energy-saving virtual machine scheduling algorithm based on resource management cloud computing technology. This article analyzes the current cloud computing and virtual machine scheduling research in the cloud computing environment. It discusses the concept, characteristics, classification, application scenarios, and key cloud computing technologies. A genetic algorithm is used to solve the problem of high energy consumption in the data center. The test results show that in the same original configuration scheme, the migration times based on the greedy algorithm adopted by GA2ND are about 1000, and the migration times of GA1ST are between 200 and 500. The GA2ND migration scheme requires fewer virtual machines. In the result analysis, the experiments compare the proposed algorithms—DVFS, IMC, GA1ST, and GA2ND—with a focus on energy consumption and virtual machine migration. Notably, DVFS serves as a reference for energy efficiency, IMC represents the proposed algorithm without genetic optimization, GA1ST denotes the genetic algorithm under a heterogeneous model, and GA2ND signifies the enhanced genetic algorithm introduced in this article. The comparison aims to assess the energy efficiency and virtual machine migration performance of each algorithm in the context of a simulated cloud computing environment. Therefore, the algorithm proposed in this article can effectively reduce energy consumption and avoid frequent migration of virtual machines.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 22","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8207","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
To address the unbalanced resource load of a virtual machine cluster, the author proposes an energy-saving virtual machine scheduling algorithm based on resource management cloud computing technology. This article analyzes the current cloud computing and virtual machine scheduling research in the cloud computing environment. It discusses the concept, characteristics, classification, application scenarios, and key cloud computing technologies. A genetic algorithm is used to solve the problem of high energy consumption in the data center. The test results show that in the same original configuration scheme, the migration times based on the greedy algorithm adopted by GA2ND are about 1000, and the migration times of GA1ST are between 200 and 500. The GA2ND migration scheme requires fewer virtual machines. In the result analysis, the experiments compare the proposed algorithms—DVFS, IMC, GA1ST, and GA2ND—with a focus on energy consumption and virtual machine migration. Notably, DVFS serves as a reference for energy efficiency, IMC represents the proposed algorithm without genetic optimization, GA1ST denotes the genetic algorithm under a heterogeneous model, and GA2ND signifies the enhanced genetic algorithm introduced in this article. The comparison aims to assess the energy efficiency and virtual machine migration performance of each algorithm in the context of a simulated cloud computing environment. Therefore, the algorithm proposed in this article can effectively reduce energy consumption and avoid frequent migration of virtual machines.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.