{"title":"Dynamic characteristics of disc brake systems of a high-speed train with wheel polygonal wear","authors":"Linchuan Yang, Huaqian Zhang, Peng Zhao, Zhiwei Wang, Chunguang Zhao, Jiliang Mo","doi":"10.1177/09544097241264322","DOIUrl":null,"url":null,"abstract":"The brake system is a key component of a high-speed train, which suffers intense wheel-rail interactions caused by wheel polygonal wear (WPW) in realistic working conditions. To explore the dynamic characteristics of the disc brake systems with WPW, a rigid-flexible coupled vehicle dynamics model is proposed. The developed model systematically takes into account the flexible deformation of brake components and wheelsets, measured WPW and non-linear factors such as wheel-rail interaction, disc-pad friction and non-linear damping characteristics. It allows the dynamic behaviors of the vehicle brake system in service to be accurately and effectively revealed. The model is verified using line test data, and then the dynamic characteristics of disc brake systems with WPW are investigated in details. The results show that for vehicle speed below 80 km/h and depths of WPW below 0.04 mm, the effect of WPW on the vibration of the caliper is slight. However, as vehicle speed and wear depth continue to rise, the vibration of the caliper increases noticeably. Furthermore, the effects of vehicle speed and wear depth on brake disc vibration are more obvious, and increasing vehicle speed and wear depth will steadily deteriorate the vibration of the disc. Besides, the effect of WPW is particularly pronounced on the dynamic behavior of the brake units closer to the wheels. Overall, the influence of wheel polygon cannot be neglected in the study of dynamic characteristics of brake system. At the same time, the proposed model can also be applied in the strength evaluation of brake components and the study of the tribological behaviors within the brake interface.","PeriodicalId":54567,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","volume":"46 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544097241264322","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The brake system is a key component of a high-speed train, which suffers intense wheel-rail interactions caused by wheel polygonal wear (WPW) in realistic working conditions. To explore the dynamic characteristics of the disc brake systems with WPW, a rigid-flexible coupled vehicle dynamics model is proposed. The developed model systematically takes into account the flexible deformation of brake components and wheelsets, measured WPW and non-linear factors such as wheel-rail interaction, disc-pad friction and non-linear damping characteristics. It allows the dynamic behaviors of the vehicle brake system in service to be accurately and effectively revealed. The model is verified using line test data, and then the dynamic characteristics of disc brake systems with WPW are investigated in details. The results show that for vehicle speed below 80 km/h and depths of WPW below 0.04 mm, the effect of WPW on the vibration of the caliper is slight. However, as vehicle speed and wear depth continue to rise, the vibration of the caliper increases noticeably. Furthermore, the effects of vehicle speed and wear depth on brake disc vibration are more obvious, and increasing vehicle speed and wear depth will steadily deteriorate the vibration of the disc. Besides, the effect of WPW is particularly pronounced on the dynamic behavior of the brake units closer to the wheels. Overall, the influence of wheel polygon cannot be neglected in the study of dynamic characteristics of brake system. At the same time, the proposed model can also be applied in the strength evaluation of brake components and the study of the tribological behaviors within the brake interface.
期刊介绍:
The Journal of Rail and Rapid Transit is devoted to engineering in its widest interpretation applicable to rail and rapid transit. The Journal aims to promote sharing of technical knowledge, ideas and experience between engineers and researchers working in the railway field.