Purinosomes and Purine Metabolism in Mammalian Neural Development: A Review

IF 1.6 4区 生物学 Q4 CELL BIOLOGY Acta Histochemica Et Cytochemica Pub Date : 2024-06-28 DOI:10.1267/ahc.24-00027
Seiya Yamada, Tomoya Mizukoshi, Ayaka Sato, Shin-ichi Sakakibara
{"title":"Purinosomes and Purine Metabolism in Mammalian Neural Development: A Review","authors":"Seiya Yamada, Tomoya Mizukoshi, Ayaka Sato, Shin-ichi Sakakibara","doi":"10.1267/ahc.24-00027","DOIUrl":null,"url":null,"abstract":"</p><p>Neural stem/progenitor cells (NSPCs) in specific brain regions require precisely regulated metabolite production during critical development periods. Purines—vital components of DNA, RNA, and energy carriers like ATP and GTP—are crucial metabolites in brain development. Purine levels are tightly controlled through two pathways: <i>de novo</i> synthesis and salvage synthesis. Enzymes driving <i>de novo</i> pathway are assembled into a large multienzyme complex termed the “purinosome.” Here, we review purine metabolism and purinosomes as spatiotemporal regulators of neural development. Notably, around postnatal day 0 (P0) during mouse cortical development, purine synthesis transitions from the <i>de novo</i> pathway to the salvage pathway. Inhibiting the <i>de novo</i> pathway affects mTORC1 pathway and leads to specific forebrain malformations. In this review, we also explore the importance of protein-protein interactions of a newly identified NSPC protein—NACHT and WD repeat domain-containing 1 (Nwd1)—in purinosome formation. Reduced Nwd1 expression disrupts purinosome formation, impacting NSPC proliferation and neuronal migration, resulting in periventricular heterotopia. Nwd1 interacts directly with phosphoribosylaminoimidazole–succinocarboxamide synthetase (PAICS), an enzyme involved in <i>de novo</i> purine synthesis. We anticipate this review will be valuable for researchers investigating neural development, purine metabolism, and protein-protein interactions.</p>\n<p></p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Histochemica Et Cytochemica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1267/ahc.24-00027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neural stem/progenitor cells (NSPCs) in specific brain regions require precisely regulated metabolite production during critical development periods. Purines—vital components of DNA, RNA, and energy carriers like ATP and GTP—are crucial metabolites in brain development. Purine levels are tightly controlled through two pathways: de novo synthesis and salvage synthesis. Enzymes driving de novo pathway are assembled into a large multienzyme complex termed the “purinosome.” Here, we review purine metabolism and purinosomes as spatiotemporal regulators of neural development. Notably, around postnatal day 0 (P0) during mouse cortical development, purine synthesis transitions from the de novo pathway to the salvage pathway. Inhibiting the de novo pathway affects mTORC1 pathway and leads to specific forebrain malformations. In this review, we also explore the importance of protein-protein interactions of a newly identified NSPC protein—NACHT and WD repeat domain-containing 1 (Nwd1)—in purinosome formation. Reduced Nwd1 expression disrupts purinosome formation, impacting NSPC proliferation and neuronal migration, resulting in periventricular heterotopia. Nwd1 interacts directly with phosphoribosylaminoimidazole–succinocarboxamide synthetase (PAICS), an enzyme involved in de novo purine synthesis. We anticipate this review will be valuable for researchers investigating neural development, purine metabolism, and protein-protein interactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哺乳动物神经发育过程中的嘌呤体和嘌呤代谢:综述
特定脑区的神经干细胞/祖细胞(NSPCs)在关键发育时期需要精确调节代谢物的产生。嘌呤是DNA、RNA以及ATP和GTP等能量载体的重要组成部分,是大脑发育过程中的关键代谢物。嘌呤水平通过两条途径严格控制:从头合成和挽救合成。驱动从头合成途径的酶组装成一个大型多酶复合体,称为 "嘌呤酶体"。在此,我们回顾了嘌呤代谢和嘌呤体作为神经发育时空调控因子的作用。值得注意的是,在小鼠皮层发育过程中,出生后第0天左右,嘌呤合成从新合成途径过渡到挽救途径。抑制从头途径会影响 mTORC1 途径并导致特定的前脑畸形。在这篇综述中,我们还探讨了一种新发现的 NSPC 蛋白--含 NACHT 和 WD 重复结构域的 1(Nwd1)--在嘌呤小体形成过程中蛋白间相互作用的重要性。Nwd1 的表达减少会破坏嘌呤小体的形成,影响 NSPC 的增殖和神经元的迁移,从而导致脑室周围异位。Nwd1 与磷酸核糖基氨基咪唑-琥珀酰甲酰胺合成酶(PAICS)直接相互作用,PAICS 是一种参与嘌呤从头合成的酶。我们预计这篇综述将对研究神经发育、嘌呤代谢和蛋白质相互作用的研究人员很有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Histochemica Et Cytochemica
Acta Histochemica Et Cytochemica 生物-细胞生物学
CiteScore
3.50
自引率
8.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: Acta Histochemica et Cytochemica is the official online journal of the Japan Society of Histochemistry and Cytochemistry. It is intended primarily for rapid publication of concise, original articles in the fields of histochemistry and cytochemistry. Manuscripts oriented towards methodological subjects that contain significant technical advances in these fields are also welcome. Manuscripts in English are accepted from investigators in any country, whether or not they are members of the Japan Society of Histochemistry and Cytochemistry. Manuscripts should be original work that has not been previously published and is not being considered for publication elsewhere, with the exception of abstracts. Manuscripts with essentially the same content as a paper that has been published or accepted, or is under consideration for publication, will not be considered. All submitted papers will be peer-reviewed by at least two referees selected by an appropriate Associate Editor. Acceptance is based on scientific significance, originality, and clarity. When required, a revised manuscript should be submitted within 3 months, otherwise it will be considered to be a new submission. The Editor-in-Chief will make all final decisions regarding acceptance.
期刊最新文献
CpG Methylation of Receptor Activator NF-κB (RANK) Gene Promoter Region Delineates Senescence-Related Decrease of RANK Gene Expression. Neutral Red Labeling: A Novel Vital Staining Method for Investigating Central and Peripheral Nervous System Lesions. Purinosomes and Purine Metabolism in Mammalian Neural Development: A Review Expression of Retinaldehyde Dehydrogenases in the Pituitary Glands of Fetus and Adult Mice Integrated Spatial Multi-Omics Study of Postmortem Brains of Alzheimer’s Disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1