A Pattern Language for Machine Learning Tasks

Benjamin Rodatz, Ian Fan, Tuomas Laakkonen, Neil John Ortega, Thomas Hoffman, Vincent Wang-Mascianica
{"title":"A Pattern Language for Machine Learning Tasks","authors":"Benjamin Rodatz, Ian Fan, Tuomas Laakkonen, Neil John Ortega, Thomas Hoffman, Vincent Wang-Mascianica","doi":"arxiv-2407.02424","DOIUrl":null,"url":null,"abstract":"Idealised as universal approximators, learners such as neural networks can be\nviewed as \"variable functions\" that may become one of a range of concrete\nfunctions after training. In the same way that equations constrain the possible\nvalues of variables in algebra, we may view objective functions as constraints\non the behaviour of learners. We extract the equivalences perfectly optimised\nobjective functions impose, calling them \"tasks\". For these tasks, we develop a\nformal graphical language that allows us to: (1) separate the core tasks of a\nbehaviour from its implementation details; (2) reason about and design\nbehaviours model-agnostically; and (3) simply describe and unify approaches in\nmachine learning across domains. As proof-of-concept, we design a novel task that enables converting\nclassifiers into generative models we call \"manipulators\", which we implement\nby directly translating task specifications into code. The resulting models\nexhibit capabilities such as style transfer and interpretable latent-space\nediting, without the need for custom architectures, adversarial training or\nrandom sampling. We formally relate the behaviour of manipulators to GANs, and\nempirically demonstrate their competitive performance with VAEs. We report on\nexperiments across vision and language domains aiming to characterise\nmanipulators as approximate Bayesian inversions of discriminative classifiers.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.02424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Idealised as universal approximators, learners such as neural networks can be viewed as "variable functions" that may become one of a range of concrete functions after training. In the same way that equations constrain the possible values of variables in algebra, we may view objective functions as constraints on the behaviour of learners. We extract the equivalences perfectly optimised objective functions impose, calling them "tasks". For these tasks, we develop a formal graphical language that allows us to: (1) separate the core tasks of a behaviour from its implementation details; (2) reason about and design behaviours model-agnostically; and (3) simply describe and unify approaches in machine learning across domains. As proof-of-concept, we design a novel task that enables converting classifiers into generative models we call "manipulators", which we implement by directly translating task specifications into code. The resulting models exhibit capabilities such as style transfer and interpretable latent-space editing, without the need for custom architectures, adversarial training or random sampling. We formally relate the behaviour of manipulators to GANs, and empirically demonstrate their competitive performance with VAEs. We report on experiments across vision and language domains aiming to characterise manipulators as approximate Bayesian inversions of discriminative classifiers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习任务的模式语言
神经网络等学习器被理想化为通用近似器,可被视为 "变量函数",经过训练后可能成为一系列具体函数中的一个。与代数中方程对变量可能值的约束一样,我们可以将目标函数视为对学习者行为的约束。我们提取目标函数完美优化后的等价关系,称其为 "任务"。针对这些任务,我们开发了一种形式化的图形语言,使我们能够:(1) 将行为的核心任务与其实现细节分开;(2) 从模型识别的角度推理和设计行为;(3) 简单描述和统一跨领域的机器学习方法。作为概念验证,我们设计了一个新颖的任务,可以将分类器转换为我们称之为 "操纵器 "的生成模型,我们通过直接将任务规范转换为代码来实现这一任务。由此产生的模型具有风格转移和可解释潜空间编辑等功能,而无需定制架构、对抗训练或随机抽样。我们将操纵器的行为与 GANs 正式联系起来,并经验性地证明了它们与 VAEs 的竞争性能。我们报告了一项横跨视觉和语言领域的实验,旨在将操纵器描述为近似贝叶斯反转的判别分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclic Segal Spaces Unbiased multicategory theory Multivariate functorial difference A Fibrational Theory of First Order Differential Structures A local-global principle for parametrized $\infty$-categories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1