Unbiased multicategory theory

Claudio Pisani
{"title":"Unbiased multicategory theory","authors":"Claudio Pisani","doi":"arxiv-2409.10150","DOIUrl":null,"url":null,"abstract":"We present an unbiased theory of symmetric multicategories, where sequences\nare replaced by families. To be effective, this approach requires an explicit\nconsideration of indexing and reindexing of objects and arrows, handled by the\ndouble category $\\dPb$ of pullback squares in finite sets: a symmetric\nmulticategory is a sum preserving discrete fibration of double categories $M:\n\\dM\\to \\dPb$. If the \\\"loose\" part of $M$ is an opfibration we get unbiased\nsymmetric monoidal categories. The definition can be usefully generalized by replacing $\\dPb$ with another\ndouble prop $\\dP$, as an indexing base, giving $\\dP$-multicategories. For\ninstance, we can remove the finiteness condition to obtain infinitary symmetric\nmulticategories, or enhance $\\dPb$ by totally ordering the fibers of its loose\narrows to obtain plain multicategories. We show how several concepts and properties find a natural setting in this\nframework. We also consider cartesian multicategories as algebras for a monad\n$(-)^\\cart$ on $\\sMlt$, where the loose arrows of $\\dM^\\cart$ are \\\"spans\" of a\ntight and a loose arrow in $\\dM$.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"190 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an unbiased theory of symmetric multicategories, where sequences are replaced by families. To be effective, this approach requires an explicit consideration of indexing and reindexing of objects and arrows, handled by the double category $\dPb$ of pullback squares in finite sets: a symmetric multicategory is a sum preserving discrete fibration of double categories $M: \dM\to \dPb$. If the \"loose" part of $M$ is an opfibration we get unbiased symmetric monoidal categories. The definition can be usefully generalized by replacing $\dPb$ with another double prop $\dP$, as an indexing base, giving $\dP$-multicategories. For instance, we can remove the finiteness condition to obtain infinitary symmetric multicategories, or enhance $\dPb$ by totally ordering the fibers of its loose arrows to obtain plain multicategories. We show how several concepts and properties find a natural setting in this framework. We also consider cartesian multicategories as algebras for a monad $(-)^\cart$ on $\sMlt$, where the loose arrows of $\dM^\cart$ are \"spans" of a tight and a loose arrow in $\dM$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无偏多类别理论
我们提出了对称多范畴的无偏理论,其中序列被族所取代。为了有效,这种方法需要明确考虑对象和箭头的索引和再索引,由有限集中回拉方阵的双范畴$\dPb$来处理:对称多范畴是双范畴$M:\dM\to \dPb$的和保存离散傅立叶。如果 $M$ 的 "松散 "部分是一个开放振动,我们就得到了无偏对称单环范畴。我们可以用另一个双命题$\dP$来代替$\dPb$,作为一个索引基,从而得到$\dP$-多范畴。例如,我们可以去掉有限性条件来得到无穷对称多范畴,或者通过对松散箭头的纤维完全排序来增强$\dPb$,从而得到朴素多范畴。我们展示了几个概念和性质是如何在这个框架中找到自然设置的。我们还考虑了作为$\sMlt$上的一元$(-)^\cart$的代数的卡特多范畴,其中$\dM^\cart$的松散箭是$\dM$中的一个ight和一个松散箭的("跨")。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclic Segal Spaces Unbiased multicategory theory Multivariate functorial difference A Fibrational Theory of First Order Differential Structures A local-global principle for parametrized $\infty$-categories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1