Anthony E Ades, Hugo Pedder, Annabel L Davies, Howard Thom, David M Phillippo, Beatrice Downing, Deborah M Caldwell, Nicky J. Welton
{"title":"Treatment recommendations based on Network Meta-Analysis: rules for risk-averse decision-makers","authors":"Anthony E Ades, Hugo Pedder, Annabel L Davies, Howard Thom, David M Phillippo, Beatrice Downing, Deborah M Caldwell, Nicky J. Welton","doi":"10.1101/2024.07.01.24309758","DOIUrl":null,"url":null,"abstract":"ABSTRACT\nBackground: The treatment recommendation based on a Network Meta-analysis (NMA) is usually the single treatment with the highest Expected Value (EV) on an evaluative function. We explore approaches which recommend multiple treatments and which penalize uncertainty, making them suitable for risk-averse decision makers.\nMethods: We introduce Loss-adjusted EV (LaEV) and compare it to GRADE and three probability-based rankings. We define the properties of a valid ranking under uncertainty and other desirable properties of ranking systems. A two-stage process is proposed: the first selects treatments superior to the reference treatment; the second identifies those that are also within a Minimal Clinically Important Difference (MCID) of the best treatment. Decision rules and ranking systems are compared on stylized examples and 10 NMAs used in NICE Guidelines.\nResults: Only LaEV reliably delivers valid rankings under uncertainty and has all the desirable properties. In 10 NMAs comparing between 4 and 40 treatments, an EV decision maker would recommend 4-14 treatments, and LaEV 0-3 (median 2) fewer. GRADE rules give rise to anomalies, and, like the probability-based rankings, the number of treatments recommended depends on arbitrary probability cutoffs. Among treatments that are superior to the reference, GRADE privileges the more uncertain ones, and in 3/10 cases GRADE failed to recommend the treatment with the highest EV and LaEV.\nConclusions: A two-stage approach based on MCID ensures that EV- and LaEV-based rules recommend a clinically appropriate number of treatments. For a risk-averse decision maker, LaEV is conservative, simple to implement, and has an independent theoretical foundation.","PeriodicalId":501386,"journal":{"name":"medRxiv - Health Policy","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Health Policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.01.24309758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT
Background: The treatment recommendation based on a Network Meta-analysis (NMA) is usually the single treatment with the highest Expected Value (EV) on an evaluative function. We explore approaches which recommend multiple treatments and which penalize uncertainty, making them suitable for risk-averse decision makers.
Methods: We introduce Loss-adjusted EV (LaEV) and compare it to GRADE and three probability-based rankings. We define the properties of a valid ranking under uncertainty and other desirable properties of ranking systems. A two-stage process is proposed: the first selects treatments superior to the reference treatment; the second identifies those that are also within a Minimal Clinically Important Difference (MCID) of the best treatment. Decision rules and ranking systems are compared on stylized examples and 10 NMAs used in NICE Guidelines.
Results: Only LaEV reliably delivers valid rankings under uncertainty and has all the desirable properties. In 10 NMAs comparing between 4 and 40 treatments, an EV decision maker would recommend 4-14 treatments, and LaEV 0-3 (median 2) fewer. GRADE rules give rise to anomalies, and, like the probability-based rankings, the number of treatments recommended depends on arbitrary probability cutoffs. Among treatments that are superior to the reference, GRADE privileges the more uncertain ones, and in 3/10 cases GRADE failed to recommend the treatment with the highest EV and LaEV.
Conclusions: A two-stage approach based on MCID ensures that EV- and LaEV-based rules recommend a clinically appropriate number of treatments. For a risk-averse decision maker, LaEV is conservative, simple to implement, and has an independent theoretical foundation.