Investigating the spatial distribution of flood inundation and landforms using topographic position index (TPI) and geomorphon-based automated landform classification methods
{"title":"Investigating the spatial distribution of flood inundation and landforms using topographic position index (TPI) and geomorphon-based automated landform classification methods","authors":"Laxmi Gupta, Jagabandhu Dixit","doi":"10.1007/s12040-024-02343-x","DOIUrl":null,"url":null,"abstract":"<p>The landform of the region highly influences the dynamics of the flood and plays a crucial role in directing the water flow, affecting the speed and volume of runoff. Assam, located in northeast India, experiences floods yearly due to adverse climatic conditions and complex terrain features. The objective of the present study is to understand the landform classification of Assam using the topographic position index (TPI) and geomorphon-based automated classification of landform (ACL) method and its spatial distribution with slope, geology, soil, LULC, and flood inundation. The ACL method shows that gentle slopes or flat areas occupy the maximum area ranging from 56.17 to 68.10% for TPI‐based slope position classes, and for geomorphon, slope feature occupies 20.61–25.39% of the total area. The spatial distribution of TPI and geomorphon-based landform classification was different because TPI compares the elevation of a point to the average elevation of its neighbourhood, while geomorphon classifies the landscape into predefined landform classes based on terrain shape and the spatial arrangement of elevation values. In both models, valleys are the most dominant landform class and are mainly present in the Central and Barak valley of Assam. The built-up areas and waterbodies on vulnerable landform classes increase their flood susceptibility. About 38.08% of the inundated area was found in wide valleys and 31% of the inundated area lies under flat landforms. The present study can be effective in land use planning, sustainable natural resource management, disaster risk management, and mitigation strategies.</p>","PeriodicalId":15609,"journal":{"name":"Journal of Earth System Science","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth System Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12040-024-02343-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The landform of the region highly influences the dynamics of the flood and plays a crucial role in directing the water flow, affecting the speed and volume of runoff. Assam, located in northeast India, experiences floods yearly due to adverse climatic conditions and complex terrain features. The objective of the present study is to understand the landform classification of Assam using the topographic position index (TPI) and geomorphon-based automated classification of landform (ACL) method and its spatial distribution with slope, geology, soil, LULC, and flood inundation. The ACL method shows that gentle slopes or flat areas occupy the maximum area ranging from 56.17 to 68.10% for TPI‐based slope position classes, and for geomorphon, slope feature occupies 20.61–25.39% of the total area. The spatial distribution of TPI and geomorphon-based landform classification was different because TPI compares the elevation of a point to the average elevation of its neighbourhood, while geomorphon classifies the landscape into predefined landform classes based on terrain shape and the spatial arrangement of elevation values. In both models, valleys are the most dominant landform class and are mainly present in the Central and Barak valley of Assam. The built-up areas and waterbodies on vulnerable landform classes increase their flood susceptibility. About 38.08% of the inundated area was found in wide valleys and 31% of the inundated area lies under flat landforms. The present study can be effective in land use planning, sustainable natural resource management, disaster risk management, and mitigation strategies.
期刊介绍:
The Journal of Earth System Science, an International Journal, was earlier a part of the Proceedings of the Indian Academy of Sciences – Section A begun in 1934, and later split in 1978 into theme journals. This journal was published as Proceedings – Earth and Planetary Sciences since 1978, and in 2005 was renamed ‘Journal of Earth System Science’.
The journal is highly inter-disciplinary and publishes scholarly research – new data, ideas, and conceptual advances – in Earth System Science. The focus is on the evolution of the Earth as a system: manuscripts describing changes of anthropogenic origin in a limited region are not considered unless they go beyond describing the changes to include an analysis of earth-system processes. The journal''s scope includes the solid earth (geosphere), the atmosphere, the hydrosphere (including cryosphere), and the biosphere; it also addresses related aspects of planetary and space sciences. Contributions pertaining to the Indian sub- continent and the surrounding Indian-Ocean region are particularly welcome. Given that a large number of manuscripts report either observations or model results for a limited domain, manuscripts intended for publication in JESS are expected to fulfill at least one of the following three criteria.
The data should be of relevance and should be of statistically significant size and from a region from where such data are sparse. If the data are from a well-sampled region, the data size should be considerable and advance our knowledge of the region.
A model study is carried out to explain observations reported either in the same manuscript or in the literature.
The analysis, whether of data or with models, is novel and the inferences advance the current knowledge.