Numerical/experimental investigation of the effect of the laser treatment on the thickness distribution of a magnesium superplastically formed part

IF 4.2 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Advances in Manufacturing Pub Date : 2024-06-20 DOI:10.1007/s40436-024-00497-x
Angela Cusanno, Pasquale Guglielmi, Donato Sorgente, Gianfranco Palumbo
{"title":"Numerical/experimental investigation of the effect of the laser treatment on the thickness distribution of a magnesium superplastically formed part","authors":"Angela Cusanno, Pasquale Guglielmi, Donato Sorgente, Gianfranco Palumbo","doi":"10.1007/s40436-024-00497-x","DOIUrl":null,"url":null,"abstract":"<p>The growing need for high-performance components in terms of shape and mechanical properties encourages the adoption of integrated technological solutions. In the present work, a novel methodology for affecting the superplastic behaviour and, in turn, the thickness distribution of magnesium alloy components is proposed. Through heat treatments using a CO<sub>2</sub> laser, the grain size was locally changed, thus modifying the superplastic behaviour in a predefined area of the blank. Both the grain coarsening produced by the laser heat treatment and the superplastic forming of the heat treated blank were simulated using a finite element model, which allowed to set the related process parameters for the manufacturing of the investigated case study (a truncated cone). The thermal finite element model of the laser heat treatment, calibrated using the experimental temperature evolutions acquired in specific areas during the heat treatment, was used to evaluate the influence of process parameters on the grain size evolution. The laser heat treatment was able to significantly promote the grain growth, increasing the mean grain size from about 8 µm to twice (about 17 µm). The resulting grain size distributions were implemented in the mechanical finite element model of the superplastic forming process and the combination of laser parameters which allowed to obtain the most uniform thickness distribution on the final component was finally experimentally reproduced and measured for validation purposes. Even in the case of the laboratory scale application, characterised by quite small dimensions, the proposed approach revealed to be effective, to improving the thinning factor (<i>t</i><sub>MIN</sub>/<i>t</i><sub>AVG</sub>) of the formed part from 0.85 to 0.89, and providing an increase in the thickness uniformity of about 4.7%.</p>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"17 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40436-024-00497-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The growing need for high-performance components in terms of shape and mechanical properties encourages the adoption of integrated technological solutions. In the present work, a novel methodology for affecting the superplastic behaviour and, in turn, the thickness distribution of magnesium alloy components is proposed. Through heat treatments using a CO2 laser, the grain size was locally changed, thus modifying the superplastic behaviour in a predefined area of the blank. Both the grain coarsening produced by the laser heat treatment and the superplastic forming of the heat treated blank were simulated using a finite element model, which allowed to set the related process parameters for the manufacturing of the investigated case study (a truncated cone). The thermal finite element model of the laser heat treatment, calibrated using the experimental temperature evolutions acquired in specific areas during the heat treatment, was used to evaluate the influence of process parameters on the grain size evolution. The laser heat treatment was able to significantly promote the grain growth, increasing the mean grain size from about 8 µm to twice (about 17 µm). The resulting grain size distributions were implemented in the mechanical finite element model of the superplastic forming process and the combination of laser parameters which allowed to obtain the most uniform thickness distribution on the final component was finally experimentally reproduced and measured for validation purposes. Even in the case of the laboratory scale application, characterised by quite small dimensions, the proposed approach revealed to be effective, to improving the thinning factor (tMIN/tAVG) of the formed part from 0.85 to 0.89, and providing an increase in the thickness uniformity of about 4.7%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光处理对镁合金超塑性成形部件厚度分布影响的数值/实验研究
对形状和机械性能方面的高性能部件的需求日益增长,促使人们采用综合技术解决方案。在本研究中,提出了一种影响镁合金部件超塑性行为和厚度分布的新方法。通过使用二氧化碳激光进行热处理,局部改变了晶粒大小,从而改变了坯料预定区域的超塑性行为。通过有限元模型模拟了激光热处理产生的晶粒粗化和热处理坯料的超塑性成形,从而为所研究的案例(截锥体)的制造设定了相关的工艺参数。激光热处理的热有限元模型利用热处理过程中特定区域获得的实验温度变化进行校准,用于评估工艺参数对晶粒大小演变的影响。激光热处理能够显著促进晶粒生长,使平均晶粒大小从约 8 微米增加到两倍(约 17 微米)。由此产生的晶粒尺寸分布被应用到超塑性成形过程的机械有限元模型中,最终部件上能够获得最均匀厚度分布的激光参数组合最终被实验再现和测量,以进行验证。即使在实验室规模的应用中,由于尺寸相当小,所提出的方法也显示出其有效性,将成形部件的减薄系数(tMIN/tAVG)从 0.85 提高到 0.89,并将厚度均匀性提高了约 4.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Manufacturing
Advances in Manufacturing Materials Science-Polymers and Plastics
CiteScore
9.10
自引率
3.80%
发文量
274
期刊介绍: As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field. All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.
期刊最新文献
Grinding defect characteristics and removal mechanism of unidirectional Cf/SiC composites The effect of the slope angle and the magnetic field on the surface quality of nickel-based superalloys in blasting erosion arc machining Study on the mechanism of burr formation in ultrasonic vibration-assisted honing 9Cr18MoV valve sleeve Flexible modification and texture prediction and control method of internal gearing power honing tooth surface ·AI-enabled intelligent cockpit proactive affective interaction: middle-level feature fusion dual-branch deep learning network for driver emotion recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1