Xueting Zhang, Junying Zhang, Congju Li, Xiuling Zhang, Jimmy Yun, Dapeng Cao
{"title":"A review on nanofiber-based composites for toxic and flammable gas sensing","authors":"Xueting Zhang, Junying Zhang, Congju Li, Xiuling Zhang, Jimmy Yun, Dapeng Cao","doi":"10.1007/s42114-024-00922-6","DOIUrl":null,"url":null,"abstract":"<p>Nanofibers, due to the characteristics of high porosity, large specific surface area, and high strength and mechanical flexibility, exhibit a great potential for gas sensing as a sensing layer or versatile support. The abundant compositions, specific morphology, and tunable pore size of nanofibers are suitable for the detection of diverse environmental gases, and its excellent flexibility and mechanical properties are convenient for fabricating the smart and wearable electronic devices. Compared with conventional powder materials, these merits of nanofibers mainly can enhance the sensitivity and stability. In this review, we first introduce the main evaluation parameters for gas sensors, the designed principle of sensors, and the advantages of nanofiber materials for gas sensing. Then, the recent advances in nanofiber-based gas sensors for monitoring the different environmental gases, mainly including hydrogen (H<sub>2</sub>), methane (CH<sub>4</sub>), carbon monoxide (CO), acid gases (H<sub>2</sub>S, NO<sub>2</sub>, and SO<sub>2</sub>), SF<sub>6</sub> and its decomposition products, chemical warfare agents (CWAs), and volatile organic compounds (VOCs), are summarized. Meanwhile, the sensing mechanism and different sensing materials based on noble metals, metal oxides, metal-organic framework, and their composites are discussed comprehensively. Finally, the challenges and perspectives of nanofiber-based gas sensors are also addressed.</p>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00922-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Nanofibers, due to the characteristics of high porosity, large specific surface area, and high strength and mechanical flexibility, exhibit a great potential for gas sensing as a sensing layer or versatile support. The abundant compositions, specific morphology, and tunable pore size of nanofibers are suitable for the detection of diverse environmental gases, and its excellent flexibility and mechanical properties are convenient for fabricating the smart and wearable electronic devices. Compared with conventional powder materials, these merits of nanofibers mainly can enhance the sensitivity and stability. In this review, we first introduce the main evaluation parameters for gas sensors, the designed principle of sensors, and the advantages of nanofiber materials for gas sensing. Then, the recent advances in nanofiber-based gas sensors for monitoring the different environmental gases, mainly including hydrogen (H2), methane (CH4), carbon monoxide (CO), acid gases (H2S, NO2, and SO2), SF6 and its decomposition products, chemical warfare agents (CWAs), and volatile organic compounds (VOCs), are summarized. Meanwhile, the sensing mechanism and different sensing materials based on noble metals, metal oxides, metal-organic framework, and their composites are discussed comprehensively. Finally, the challenges and perspectives of nanofiber-based gas sensors are also addressed.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.