Shicheng Zhao, Xuan Gao, Jiajun Lou, Cuilong Liu, Youping Liu, Ye Wu
{"title":"Experimental study on impact and flexural behaviors of CFRP/aluminum-honeycomb sandwich panel","authors":"Shicheng Zhao, Xuan Gao, Jiajun Lou, Cuilong Liu, Youping Liu, Ye Wu","doi":"10.1515/epoly-2024-0044","DOIUrl":null,"url":null,"abstract":"To investigate the impact and flexure behavior of carbon fiber reinforced polymers/aluminum-honeycomb sandwich panel, low-velocity impact, compression-after-impact (CAI), and three-point flexure tests are conducted carefully. Four kinds of carbon fiber prepregs are selected to make face sheets by hot press preparation. Further, the digital image correlation technique is employed to record the damage evolution under the compression and flexure loads. The results show that the sandwich structure has two stages of impact response, first, the brittle behavior of the upper panel, and then the resistance of both sandwich and lower panel to absorb energy. In the CAI test, the failure position shifts from the ends to the impact cross section, and the compressive strength can be reduced by 40% only by 1 J impact. The strength of in-plane flexure is at least twice greater than that of out-of-plane flexure. The damage and deformation of in-plane flexure are found mainly in the upper panel and sandwich core, and the lower panel bends significantly.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2024-0044","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the impact and flexure behavior of carbon fiber reinforced polymers/aluminum-honeycomb sandwich panel, low-velocity impact, compression-after-impact (CAI), and three-point flexure tests are conducted carefully. Four kinds of carbon fiber prepregs are selected to make face sheets by hot press preparation. Further, the digital image correlation technique is employed to record the damage evolution under the compression and flexure loads. The results show that the sandwich structure has two stages of impact response, first, the brittle behavior of the upper panel, and then the resistance of both sandwich and lower panel to absorb energy. In the CAI test, the failure position shifts from the ends to the impact cross section, and the compressive strength can be reduced by 40% only by 1 J impact. The strength of in-plane flexure is at least twice greater than that of out-of-plane flexure. The damage and deformation of in-plane flexure are found mainly in the upper panel and sandwich core, and the lower panel bends significantly.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.