Resource utilization of oak fruit peel as biomass waste for the synthesis of carbon with graphene oxide-like composition and its composite with Mg1−xCaxFe2O4 for Cd(ii) removal from water: characterization, magnetic properties, and potential adsorption study†

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-26 DOI:10.1039/D4EW00059E
Younes Zohrabi, Mohammad Ebrahim Ghazi, Morteza Izadifard, Alireza Valipour and Sivasankaran Ayyaru
{"title":"Resource utilization of oak fruit peel as biomass waste for the synthesis of carbon with graphene oxide-like composition and its composite with Mg1−xCaxFe2O4 for Cd(ii) removal from water: characterization, magnetic properties, and potential adsorption study†","authors":"Younes Zohrabi, Mohammad Ebrahim Ghazi, Morteza Izadifard, Alireza Valipour and Sivasankaran Ayyaru","doi":"10.1039/D4EW00059E","DOIUrl":null,"url":null,"abstract":"<p >In this study, carbon with graphene oxide (GO)-like composition (C<small><sub>GO</sub></small>) was prepared from oak fruit peel (OFP) using a room-temperature method. C<small><sub>GO</sub></small> was decorated with sol–gel synthesized Mg<small><sub>1−<em>x</em></sub></small>Ca<small><sub><em>x</em></sub></small>Fe<small><sub>2</sub></small>O<small><sub>4</sub></small> (<em>x</em> = 0.2 (MCF2) and 0.8 (MCF8)) <em>via</em> a hydrothermal method to obtain C<small><sub>GO</sub></small>/MCF nanocomposites. The samples were characterized using XRD, RS, FTIR, FESEM, EDX, TEM, BET, and VSM analysis. C<small><sub>GO</sub></small>/MCF nanocomposites were assessed for their Cd<small><sup>2+</sup></small> adsorption capacity from aqueous solutions <em>via</em> flame AAS. Factors such as contact time (1–60 min); nanocomposite dose (0.002–0.01 g); initial Cd<small><sup>2+</sup></small> concentration (5–60 mg L<small><sup>−1</sup></small>); and coexisting ions of Pb<small><sup>2+</sup></small>, Co<small><sup>2+</sup></small>, and Ni<small><sup>2+</sup></small> (10 mg L<small><sup>−1</sup></small> each) at pH 7 were examined. The results indicated that the Cd<small><sup>2+</sup></small> adsorption capacity of C<small><sub>GO</sub></small>/MCF2 (357.5 mg g<small><sup>−1</sup></small>) was higher (30%) than that of C<small><sub>GO</sub></small>/MCF8 (250 mg g<small><sup>−1</sup></small>) at a contact time of 1 h, nanocomposite dose of 0.002 g, and initial Cd<small><sup>2+</sup></small> concentration of 60 mg L<small><sup>−1</sup></small>. The Cd<small><sup>2+</sup></small> adsorption capacity of C<small><sub>GO</sub></small>/MCF nanocomposites was fitted with pseudo-second-order kinetics (<em>R</em><small><sup>2</sup></small> &gt; 0.99) and the Langmuir isotherm (<em>R</em><small><sup>2</sup></small> &gt; 0.99). The adsorption mechanisms involved pore filling, electrostatic attraction, surface complexation, ion exchange, and cation–π attraction. However, coexisting metal ions affected Cd<small><sup>2+</sup></small> removal by C<small><sub>GO</sub></small>/MCF2, reducing the efficiency by 33%. Using wastewater from a plating metal restoration workshop, it was demonstrated that the C<small><sub>GO</sub></small>/MCF2 nanocomposite exhibits high removal efficiencies of 71% for Cd, 100% for Pb, 32% for Zn, and 28% for Fe. This study suggests that C<small><sub>GO</sub></small> prepared from green biomass of OFP, in combination with MCF2, can be a promising adsorbent for removing metal contaminants from water and wastewater.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00059e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, carbon with graphene oxide (GO)-like composition (CGO) was prepared from oak fruit peel (OFP) using a room-temperature method. CGO was decorated with sol–gel synthesized Mg1−xCaxFe2O4 (x = 0.2 (MCF2) and 0.8 (MCF8)) via a hydrothermal method to obtain CGO/MCF nanocomposites. The samples were characterized using XRD, RS, FTIR, FESEM, EDX, TEM, BET, and VSM analysis. CGO/MCF nanocomposites were assessed for their Cd2+ adsorption capacity from aqueous solutions via flame AAS. Factors such as contact time (1–60 min); nanocomposite dose (0.002–0.01 g); initial Cd2+ concentration (5–60 mg L−1); and coexisting ions of Pb2+, Co2+, and Ni2+ (10 mg L−1 each) at pH 7 were examined. The results indicated that the Cd2+ adsorption capacity of CGO/MCF2 (357.5 mg g−1) was higher (30%) than that of CGO/MCF8 (250 mg g−1) at a contact time of 1 h, nanocomposite dose of 0.002 g, and initial Cd2+ concentration of 60 mg L−1. The Cd2+ adsorption capacity of CGO/MCF nanocomposites was fitted with pseudo-second-order kinetics (R2 > 0.99) and the Langmuir isotherm (R2 > 0.99). The adsorption mechanisms involved pore filling, electrostatic attraction, surface complexation, ion exchange, and cation–π attraction. However, coexisting metal ions affected Cd2+ removal by CGO/MCF2, reducing the efficiency by 33%. Using wastewater from a plating metal restoration workshop, it was demonstrated that the CGO/MCF2 nanocomposite exhibits high removal efficiencies of 71% for Cd, 100% for Pb, 32% for Zn, and 28% for Fe. This study suggests that CGO prepared from green biomass of OFP, in combination with MCF2, can be a promising adsorbent for removing metal contaminants from water and wastewater.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将橡树果皮作为生物质废物进行资源化利用,以合成类似氧化石墨烯成分的碳及其与 Mg1-xCaxFe2O4 的复合材料,用于去除水中的镉(II):表征、磁性能和吸附潜力研究
本研究采用室温法从橡树果皮(OFP)中制备了类似氧化石墨烯(GO)成分的碳(CGO)。通过水热法将 CGO 与溶胶-凝胶合成的 Mg1-xCaxFe2O4 (x = 0.2(MCF2)和 0.8(MCF8))进行装饰,得到 CGO/MCF 纳米复合材料。样品采用 XRD、RS、FTIR、FESEM、EDX、TEM、BET 和 VSM 分析进行表征。通过火焰原子吸收光谱法评估了 CGO/MCF 纳米复合材料对水溶液中 Cd2+ 的吸附能力。考察的因素包括:接触时间(1-60 分钟);纳米复合材料剂量(0.002-0.01 克);初始 Cd2+ 浓度(5-60 毫克/升);pH 值为 7 时的共存离子 Pb2+、Co2+ 和 Ni2+(各 10 毫克/升)。结果表明,在接触时间为 1 h、纳米复合材料剂量为 0.002 g、初始 Cd2+ 浓度为 60 mg L-1 的条件下,CGO/MCF2(357.5 mg g-1)的 Cd2+ 吸附能力(30%)高于 CGO/MCF8(250 mg g-1)。CGO/MCF 纳米复合材料对 Cd2+ 的吸附能力与伪二阶动力学(R2 > 0.99)和朗缪尔等温线(R2 > 0.99)相吻合。吸附机理包括孔隙填充、静电吸引、表面络合、离子交换和阳离子-π吸引。然而,共存的金属离子影响了 CGO/MCF2 对 Cd2+ 的去除,效率降低了 33%。利用电镀金属修复车间的废水证明,CGO/MCF2 纳米复合材料对镉的去除率高达 71%,对铅的去除率为 100%,对锌的去除率为 32%,对铁的去除率为 28%。这项研究表明,由 OFP 绿色生物质制备的 CGO 与 MCF2 结合使用,可以成为一种很有前景的吸附剂,用于去除水和废水中的金属污染物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1