Effect of Fluorine Segments in Fluoropolymer matrix on the Properties of Gel Polymer Electrolytes

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemNanoMat Pub Date : 2024-06-24 DOI:10.1002/cnma.202400180
Wenting Chen, Feng Hai, Xin Gao, Jingyu Guo, Yikun Yi, Weicheng Xue, Wei Tang, Shanqing Zhang, Mingtao Li
{"title":"Effect of Fluorine Segments in Fluoropolymer matrix on the Properties of Gel Polymer Electrolytes","authors":"Wenting Chen, Feng Hai, Xin Gao, Jingyu Guo, Yikun Yi, Weicheng Xue, Wei Tang, Shanqing Zhang, Mingtao Li","doi":"10.1002/cnma.202400180","DOIUrl":null,"url":null,"abstract":"Polymer quasi‐solid electrolytes have been paid widely attention in account of their outstanding advantages in safety, flexibility, viscoelasticity and film formation. Fluoropolymer is used as matrix of gel electrolytes not only has high electrochemical stability, but also facilitates the dissociation of lithium salts owning to the strong electron‐absorbing C‐F groups, which makes it a very promising choice for the further development of gel electrolytes. Due to the different sites of C‐F bonds, their activity is also diverse, which results in the difference of the mobility of lithium ions and the LiF composition of SEI film on the surface of lithium metal anode. As a result, distinct fluorine‐containing gel polymer electrolytes are prepared by in‐situ polymerization of two different monomers, HFMA and TFMA. Compared with ‐CF3 on terminal group in TFMA, the gel electrolyte polymerized with HFMA whose C‐F group with stronger electronegativity is at the intermediate carbon site, as polymer matrix has better performance. The ionic conductivity achieves 7.02×10−3 S cm−1 at room temperature, and the assembled batteries have a capacity retention rate of 91% after 200 cycles of 1 C. Our research has laid a solid theoretical foundation for the further development of quasi‐solid electrolyte.","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"3 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cnma.202400180","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer quasi‐solid electrolytes have been paid widely attention in account of their outstanding advantages in safety, flexibility, viscoelasticity and film formation. Fluoropolymer is used as matrix of gel electrolytes not only has high electrochemical stability, but also facilitates the dissociation of lithium salts owning to the strong electron‐absorbing C‐F groups, which makes it a very promising choice for the further development of gel electrolytes. Due to the different sites of C‐F bonds, their activity is also diverse, which results in the difference of the mobility of lithium ions and the LiF composition of SEI film on the surface of lithium metal anode. As a result, distinct fluorine‐containing gel polymer electrolytes are prepared by in‐situ polymerization of two different monomers, HFMA and TFMA. Compared with ‐CF3 on terminal group in TFMA, the gel electrolyte polymerized with HFMA whose C‐F group with stronger electronegativity is at the intermediate carbon site, as polymer matrix has better performance. The ionic conductivity achieves 7.02×10−3 S cm−1 at room temperature, and the assembled batteries have a capacity retention rate of 91% after 200 cycles of 1 C. Our research has laid a solid theoretical foundation for the further development of quasi‐solid electrolyte.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含氟聚合物基体中的氟段对凝胶聚合物电解质性能的影响
聚合物准固体电解质因其在安全性、柔韧性、粘弹性和成膜性方面的突出优势而受到广泛关注。氟聚合物作为凝胶电解质的基质,不仅具有较高的电化学稳定性,而且由于其C-F基团具有较强的吸电子性,有利于锂盐的解离,因此是凝胶电解质进一步发展的一个非常有前景的选择。由于 C-F 键的位置不同,其活性也各不相同,这就导致了锂金属阳极表面 SEI 膜的锂离子迁移率和 LiF 成分的差异。因此,通过 HFMA 和 TFMA 两种不同单体的原位聚合,制备出了不同的含氟凝胶聚合物电解质。与 TFMA 中末端基团上的 -CF3 相比,用 HFMA 聚合的凝胶电解质性能更好,因为 HFMA 的 C-F 基团位于聚合物基体的中间碳位点,电负性更强。我们的研究为进一步开发准固体电解质奠定了坚实的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
期刊最新文献
Front Cover: Trichosanthes Cucumerina Derived Activated Carbon: The Potential Electrode material for High Energy Symmetric Supercapacitor (ChemNanoMat 12/2024) Front Cover: Single Source Precursor Path to 2D Materials: A Case Study of Solution-Processed Molybdenum-Rich MoSe2-x Ultrathin Nanosheets (ChemNanoMat 11/2024) Facile Fabrication of LaFeO3 Supported Pd Nanoparticles as Highly Effective Heterogeneous Catalyst for Suzuki–Miyaura Coupling Reaction Effect of Electric Field on Carbon Encapsulation and Catalytic Activity of Pd for Efficient Formic Acid Decomposition Two-Dimensional Metal Covalent Organic Polymers with Dirhodium(II) Photoreduction Centers for Efficient Nitrogen Fixation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1