Effects of nitrogen and oxygen co-doping on α to β phase transition in tungsten

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Research Pub Date : 2024-06-19 DOI:10.1557/s43578-024-01362-0
Ananya Chattaraj, Aloke Kanjilal, Vijay Kumar
{"title":"Effects of nitrogen and oxygen co-doping on α to β phase transition in tungsten","authors":"Ananya Chattaraj, Aloke Kanjilal, Vijay Kumar","doi":"10.1557/s43578-024-01362-0","DOIUrl":null,"url":null,"abstract":"<p>β-W is a potential candidate for spintronic devices, but its formation is a challenge as it is metastable and is stabilized by O doping. Here, using ab initio calculations, we study N doping in W and find it to favor octahedral interstitial sites in α-W but tetrahedral interstitial sites in β-W. The solution energy of N in both α- and β-W is endothermic that makes a transition from α to β-W difficult. However, calculations on interaction of N and N<sub>2</sub> on small clusters of W for reactive deposition of W films show that N<sub>2</sub> dissociates on W clusters leading to the incorporation of N in the W film. Further ab initio molecular dynamics simulations on N and O co-doping in α- and β-W show that the β phase becomes energetically favorable over α-W making it possible to form β-W with low O doping and its applications in devices.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":"160 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01362-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

β-W is a potential candidate for spintronic devices, but its formation is a challenge as it is metastable and is stabilized by O doping. Here, using ab initio calculations, we study N doping in W and find it to favor octahedral interstitial sites in α-W but tetrahedral interstitial sites in β-W. The solution energy of N in both α- and β-W is endothermic that makes a transition from α to β-W difficult. However, calculations on interaction of N and N2 on small clusters of W for reactive deposition of W films show that N2 dissociates on W clusters leading to the incorporation of N in the W film. Further ab initio molecular dynamics simulations on N and O co-doping in α- and β-W show that the β phase becomes energetically favorable over α-W making it possible to form β-W with low O doping and its applications in devices.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮和氧共同掺杂对钨中 α 至 β 相转变的影响
β-W是自旋电子器件的潜在候选材料,但它的形成是一个挑战,因为它是易陨落的,需要通过掺杂O来稳定。在此,我们利用 ab initio 计算研究了 W 中的 N 掺杂,发现它有利于 α-W 中的八面体间隙位点,但有利于 β-W 中的四面体间隙位点。N 在 α- 和 β-W 中的溶解能都是内热的,这使得从 α 到 β-W 的转变变得困难。然而,对用于反应沉积 W 薄膜的小 W 簇上的 N 和 N2 的相互作用进行的计算表明,N2 在 W 簇上解离,导致 N 加入 W 薄膜中。关于 N 和 O 在 α- 和 β-W 中共同掺杂的进一步 ab initio 分子动力学模拟表明,β 相在能量上比 α-W 更有利,从而有可能形成低 O 掺杂的 β-W,并将其应用于设备中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Research
Journal of Materials Research 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.70%
发文量
362
审稿时长
2.8 months
期刊介绍: Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome. • Novel materials discovery • Electronic, photonic and magnetic materials • Energy Conversion and storage materials • New thermal and structural materials • Soft materials • Biomaterials and related topics • Nanoscale science and technology • Advances in materials characterization methods and techniques • Computational materials science, modeling and theory
期刊最新文献
Effect of Co concentration on cation distribution and magnetic and magneto-optical properties of CoxZn1-xFe2O4 nanoparticles synthesized with citrate precursor method Fabrication and characterization of nanocomposite hydrogel based N-succinyl chitosan/oxidized tragacanth gum/silver nanoparticles for biomedical materials Development of a processing route for the fabrication of thin hierarchically porous copper self-standing structure using direct ink writing and sintering for electrochemical energy storage application Rapidly synthesis of AuM (M = Pt, Pd) hexagonals/graphene quantum dots nanostructures and their application for non-enzyme hydrogen peroxide detection Nanocomposites Fe2O3/PNR loaded partially reduced rGO/GCE as an electrochemical probe for selective determination of uric acid and dopamine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1