{"title":"Dynamic and stability analysis of crescent geometry-possessing textured journal bearing using nanolubricant","authors":"Deepak Byotra, Sanjay Sharma","doi":"10.1108/ilt-03-2024-0089","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to find the dynamic performance parameters of the journal bearing with micro geometries patterning the arc (crescent) shape textures provided in three specific regions of the journal bearing: the full, the second half and the increasing pressure region. The dynamic behavior of textured journal bearings has been analyzed by computing dynamic parameters and linear and non-linear trajectories.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The lubricant flows between the bearing and journal surface are governed by Reynold’s equation, which has been solved by finite the element method. The dynamic performance parameters such as stiffness, damping, threshold speed, critical mass and whirl frequency ratio are examined under various operating conditions by considering various ranges of eccentricity ratios and texture depths. Linear and non-linear equations of motion have been solved with Ranga–Kutta method to get journal motion trajectories. Also, the impact of adding aluminum oxide and copper oxide nanoparticles to the base lubricant in combination with arc-shaped textures is analyzed to further see any enhancement in the performance parameters.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The findings demonstrated that direct stiffness and damping parameters increased to their maximum level with six textures in the pressure-increasing region when compared with the untextured surface. Also, nanoparticle additives showed improvements above the highest value attained with no inclusion of additives in the same region or quantity of textures.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>Engineers may design bearings with improved stability and overall performance if they understand how texture form impacts dynamic properties.</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"32 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Lubrication and Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-03-2024-0089","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study aims to find the dynamic performance parameters of the journal bearing with micro geometries patterning the arc (crescent) shape textures provided in three specific regions of the journal bearing: the full, the second half and the increasing pressure region. The dynamic behavior of textured journal bearings has been analyzed by computing dynamic parameters and linear and non-linear trajectories.
Design/methodology/approach
The lubricant flows between the bearing and journal surface are governed by Reynold’s equation, which has been solved by finite the element method. The dynamic performance parameters such as stiffness, damping, threshold speed, critical mass and whirl frequency ratio are examined under various operating conditions by considering various ranges of eccentricity ratios and texture depths. Linear and non-linear equations of motion have been solved with Ranga–Kutta method to get journal motion trajectories. Also, the impact of adding aluminum oxide and copper oxide nanoparticles to the base lubricant in combination with arc-shaped textures is analyzed to further see any enhancement in the performance parameters.
Findings
The findings demonstrated that direct stiffness and damping parameters increased to their maximum level with six textures in the pressure-increasing region when compared with the untextured surface. Also, nanoparticle additives showed improvements above the highest value attained with no inclusion of additives in the same region or quantity of textures.
Originality/value
Engineers may design bearings with improved stability and overall performance if they understand how texture form impacts dynamic properties.
期刊介绍:
Industrial Lubrication and Tribology provides a broad coverage of the materials and techniques employed in tribology. It contains a firm technical news element which brings together and promotes best practice in the three disciplines of tribology, which comprise lubrication, wear and friction. ILT also follows the progress of research into advanced lubricants, bearings, seals, gears and related machinery parts, as well as materials selection. A double-blind peer review process involving the editor and other subject experts ensures the content''s validity and relevance.