Yu Feng, Shaolei Wu, Honglei Nie, Chaochao Peng, Wei Wang
{"title":"Simulation and mechanism analysis of fretting wear of parallel groove clamps in distribution networks caused by Karman vortex vibration","authors":"Yu Feng, Shaolei Wu, Honglei Nie, Chaochao Peng, Wei Wang","doi":"10.1108/ilt-07-2024-0243","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The phenomenon of friction and wear in parallel groove clamps under wind vibration in 10 kV distribution networks represents a significant challenge that can lead to their failure. This study aims to elucidate the wear mechanism of parallel groove clamps under wind-induced vibration through simulation and experimentation.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>FLUENT software was used to simulate the flow around the conductor and the parallel groove fixture, and the Karman vortex street phenomenon was discussed. The stress fluctuations of each component under breeze vibration conditions were investigated using ANSYS, and fretting experimentations were conducted at varying amplitudes.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results demonstrate that the impact of breeze vibration on the internal stress of the parallel groove clamps is considerable. The maximum stress observed on the lower clamping block was found to be up to 300 MPa. As wind speed increased, the maximum vibration frequency was observed to reach 72.6 Hz. Concurrently, as the vibration amplitude increased, the damage in the contact zone of the lower clamping block also increased, with the maximum contact resistance reaching 78.0 µO at a vibration amplitude of 1.2 mm. This was accompanied by a shift in the wear mechanism from adhesive wear to oxidative wear and fatigue wear.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This study presents a comprehensive analysis of the fretting wear phenomenon associated with parallel groove clamps under wind vibration. The findings provide a reference basis for the design and protection of parallel groove clamps.</p><!--/ Abstract__block -->","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-07-2024-0243","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The phenomenon of friction and wear in parallel groove clamps under wind vibration in 10 kV distribution networks represents a significant challenge that can lead to their failure. This study aims to elucidate the wear mechanism of parallel groove clamps under wind-induced vibration through simulation and experimentation.
Design/methodology/approach
FLUENT software was used to simulate the flow around the conductor and the parallel groove fixture, and the Karman vortex street phenomenon was discussed. The stress fluctuations of each component under breeze vibration conditions were investigated using ANSYS, and fretting experimentations were conducted at varying amplitudes.
Findings
The results demonstrate that the impact of breeze vibration on the internal stress of the parallel groove clamps is considerable. The maximum stress observed on the lower clamping block was found to be up to 300 MPa. As wind speed increased, the maximum vibration frequency was observed to reach 72.6 Hz. Concurrently, as the vibration amplitude increased, the damage in the contact zone of the lower clamping block also increased, with the maximum contact resistance reaching 78.0 µO at a vibration amplitude of 1.2 mm. This was accompanied by a shift in the wear mechanism from adhesive wear to oxidative wear and fatigue wear.
Originality/value
This study presents a comprehensive analysis of the fretting wear phenomenon associated with parallel groove clamps under wind vibration. The findings provide a reference basis for the design and protection of parallel groove clamps.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.