{"title":"Assessing seismic hazard and uncertainty in Büyükçekmece using ground motion simulations","authors":"Hakan Süleyman, Eser Çaktı","doi":"10.1007/s10518-024-01953-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a comprehensive seismic hazard assessment for Büyükçekmece, a district in Istanbul, Turkey, situated near the seismically active North Anatolian Fault (NAF). The study utilizes stochastic ground motion simulations with the validated EXSIM algorithm to understand the potential impact of medium to large-magnitude earthquakes (ranging from M<sub>W</sub> 6.3 to 7.42) on this vulnerable community. The research employs a site-specific approach, considering unique amplification factors for each location. By conducting 50 scenario-based simulations, the study assesses the seismic hazard, highlighting the importance of comprehending variations in ground motion, even when they are small, for a more precise hazard assessment. Furthermore, this study addresses the critical issue of uncertainty, particularly concerning stress parameters and hypocenter locations. The researchers demonstrate that variability in these factors can introduce substantial uncertainty in ground motion predictions. The study provides insights into the range of potential ground motion outcomes through probabilistic assessments involving multiple scenarios and stress drop values. Notably, the results indicate that ground motion levels vary with earthquake magnitudes and underscore the significance of accounting for this variability. This research emphasizes the seismic vulnerability of Büyükçekmece and the importance of accurate ground motion simulations, offering valuable insights for earthquake preparedness and mitigation efforts in the region.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 10","pages":"4873 - 4895"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-01953-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-01953-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a comprehensive seismic hazard assessment for Büyükçekmece, a district in Istanbul, Turkey, situated near the seismically active North Anatolian Fault (NAF). The study utilizes stochastic ground motion simulations with the validated EXSIM algorithm to understand the potential impact of medium to large-magnitude earthquakes (ranging from MW 6.3 to 7.42) on this vulnerable community. The research employs a site-specific approach, considering unique amplification factors for each location. By conducting 50 scenario-based simulations, the study assesses the seismic hazard, highlighting the importance of comprehending variations in ground motion, even when they are small, for a more precise hazard assessment. Furthermore, this study addresses the critical issue of uncertainty, particularly concerning stress parameters and hypocenter locations. The researchers demonstrate that variability in these factors can introduce substantial uncertainty in ground motion predictions. The study provides insights into the range of potential ground motion outcomes through probabilistic assessments involving multiple scenarios and stress drop values. Notably, the results indicate that ground motion levels vary with earthquake magnitudes and underscore the significance of accounting for this variability. This research emphasizes the seismic vulnerability of Büyükçekmece and the importance of accurate ground motion simulations, offering valuable insights for earthquake preparedness and mitigation efforts in the region.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.