首页 > 最新文献

Bulletin of Earthquake Engineering最新文献

英文 中文
Does seismic isolation reduce the seismic vulnerability and the variability of the inelastic seismic response? Large-scale experimental investigation
IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-11-15 DOI: 10.1007/s10518-024-02034-4
Anastasios Tsiavos, Miguel Figueiredo Nunes, Bozidar Stojadinovic

This paper focuses on the large-scale experimental investigation of the seismic vulnerability and the variability of the inelastic seismic response of seismically isolated structures in comparison to conventional, fixed-based structures. The experimental setup comprises a steel structure consisting of two steel columns and a steel mass on top. The structure is seismically isolated using four friction pendulum bearings and subjected to an ensemble of strong recorded earthquake ground motion excitations using the shaking table of ETH laboratory. A mechanical clevis connection consisting of two hinges and two replaceable steel coupons is designed and constructed to facilitate the investigation of the seismic inelastic behavior of the structure for the selected ground motion record ensemble through the replacement of the damaged coupons after each shaking table excitation. Within this frame, the mechanical clevis connection presented in this study facilitates the parametric and experimental investigation of the seismic, inelastic behaviour of a wide range of structures and the experimental determination of their seismic fragility curves. The seismic vulnerability and the variability of the seismic response of the seismically isolated and the corresponding fixed-based structure are compared for three seismic hazard levels. The comparison of the response of the two structures demonstrates experimentally the ability of seismic isolation to reduce the seismic vulnerability and the variability of the seismic response of structures subjected to strong earthquake ground motion excitation, thus leading to the design of structures of higher performance, predictability and reliability in their response, even for extreme earthquake events.

{"title":"Does seismic isolation reduce the seismic vulnerability and the variability of the inelastic seismic response? Large-scale experimental investigation","authors":"Anastasios Tsiavos,&nbsp;Miguel Figueiredo Nunes,&nbsp;Bozidar Stojadinovic","doi":"10.1007/s10518-024-02034-4","DOIUrl":"10.1007/s10518-024-02034-4","url":null,"abstract":"<div><p>This paper focuses on the large-scale experimental investigation of the seismic vulnerability and the variability of the inelastic seismic response of seismically isolated structures in comparison to conventional, fixed-based structures. The experimental setup comprises a steel structure consisting of two steel columns and a steel mass on top. The structure is seismically isolated using four friction pendulum bearings and subjected to an ensemble of strong recorded earthquake ground motion excitations using the shaking table of ETH laboratory. A mechanical clevis connection consisting of two hinges and two replaceable steel coupons is designed and constructed to facilitate the investigation of the seismic inelastic behavior of the structure for the selected ground motion record ensemble through the replacement of the damaged coupons after each shaking table excitation. Within this frame, the mechanical clevis connection presented in this study facilitates the parametric and experimental investigation of the seismic, inelastic behaviour of a wide range of structures and the experimental determination of their seismic fragility curves. The seismic vulnerability and the variability of the seismic response of the seismically isolated and the corresponding fixed-based structure are compared for three seismic hazard levels. The comparison of the response of the two structures demonstrates experimentally the ability of seismic isolation to reduce the seismic vulnerability and the variability of the seismic response of structures subjected to strong earthquake ground motion excitation, thus leading to the design of structures of higher performance, predictability and reliability in their response, even for extreme earthquake events.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 15","pages":"7359 - 7381"},"PeriodicalIF":3.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-02034-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced nonlinear soil-structure interaction model for the seismic analysis of safety-related nuclear structures
IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-11-12 DOI: 10.1007/s10518-024-02055-z
J. M. Gonzalez, A. H. Barbat, Y. F. Vargas-Alzate, F. Rastellini, J. Ramirez, C. Escudero, L. G. Pujades

This article proposes an advanced nonlinear soil-structure interaction methodology, for the seismic analysis of a nuclear structure. To do so, a study is performed on a nuclear reinforced concrete structure considering the effects of the nonlinearity due to the sliding and rocking at the soil-structure interface, under a Beyond Design Basis Earthquake. A tridimensional numerical model based on the Finite Element Method is developed for the structure and the soil. The model of the structure considers composite materials to describe all the structural members, taking full advantage of the modelling capabilities of the finite element method. The soil layers are modelled assuming their degraded properties due to the propagation of the seismic ground motion. An innovative approach to achieve spectral matching at the surface of the FEM soil model after propagation from the bedrock has been successfully implemented. The seismic analysis on the structure has been performed by considering three hypotheses for the contact between soil and structure: fixed-base, fixed contact and sliding-rocking contact. Insights are provided after comparing floor spectra for the contact approaches assessed in this research, calculated at the systems and components’ locations at the nuclear structure. Finally, a statistical approach for the soil properties allows to study the effects of these uncertainties on the structural response.

{"title":"Advanced nonlinear soil-structure interaction model for the seismic analysis of safety-related nuclear structures","authors":"J. M. Gonzalez,&nbsp;A. H. Barbat,&nbsp;Y. F. Vargas-Alzate,&nbsp;F. Rastellini,&nbsp;J. Ramirez,&nbsp;C. Escudero,&nbsp;L. G. Pujades","doi":"10.1007/s10518-024-02055-z","DOIUrl":"10.1007/s10518-024-02055-z","url":null,"abstract":"<div><p>This article proposes an advanced nonlinear soil-structure interaction methodology, for the seismic analysis of a nuclear structure. To do so, a study is performed on a nuclear reinforced concrete structure considering the effects of the nonlinearity due to the sliding and rocking at the soil-structure interface, under a <i>Beyond Design Basis Earthquake</i>. A tridimensional numerical model based on the Finite Element Method is developed for the structure and the soil. The model of the structure considers composite materials to describe all the structural members, taking full advantage of the modelling capabilities of the finite element method. The soil layers are modelled assuming their degraded properties due to the propagation of the seismic ground motion. An innovative approach to achieve spectral matching at the surface of the FEM soil model after propagation from the bedrock has been successfully implemented. The seismic analysis on the structure has been performed by considering three hypotheses for the contact between soil and structure: fixed-base, fixed contact and sliding-rocking contact. Insights are provided after comparing floor spectra for the contact approaches assessed in this research, calculated at the systems and components’ locations at the nuclear structure. Finally, a statistical approach for the soil properties allows to study the effects of these uncertainties on the structural response.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 15","pages":"7465 - 7488"},"PeriodicalIF":3.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-02055-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation on the seismic performance of reinforced concrete frames with decoupled masonry infills: considering in-plane and out-of-plane load interaction effects
IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-11-12 DOI: 10.1007/s10518-024-02012-w
Aleksa Milijaš, Marko Marinković, Christoph Butenweg, Sven Klinkel

Masonry infills are frequently employed as both outer and inner partitions in reinforced concrete (RC) frame structures due to their outstanding characteristics in terms of energy efficiency, fire resistance and sound isolation. However, common construction practice typically involves the mortar connection between masonry infills and RC frames. For this reason, the unforeseen frame-infill interaction takes part under seismic loading, which leads to severe and uncontrollable damage to masonry infills. This interaction also causes damage or even the collapse of the RC frames and thus of the whole structures. The poor performance of infilled RC frame structures in recent earthquake events is a strong motivation for the development of innovative engineering solutions, which aim to mitigate the detrimental effects of frame-infill interaction. This article introduces an innovative decoupling system founded on the concept of decoupling the RC frame from the masonry infill. The decoupling is achieved by inserting elastomeric material between the masonry infill and RC frame. The properly designed decoupling system allows infill activation only at high in-plane drifts. Simultaneously, it provides boundary conditions for seismic loads acting perpendicular to the infill plane. Firstly, the article explains the design of the masonry infill with the decoupling system and its installation. Afterwards, the results of small specimen tests carried out to determine the load-bearing capacity of the decoupling system are presented. Furthermore, the article discusses the findings of an extensive experimental campaign conducted on nine real-size RC frames with decoupled infills subjected to separate and combined in-plane and out-of-plane loadings. In addition to different loading types, various infill configurations are considered – solid infill, infill with centric window, and infill with centric door opening. Finally, the experimental results of RC frames with decoupled infills are compared with the experimental results of traditionally infilled RC frames, which were tested within the framework of the same project. The thorough evaluation and comparison of the experimental findings demonstrate the significant improvement of seismic performance of infilled RC frames if the decoupling system is applied.

{"title":"Experimental investigation on the seismic performance of reinforced concrete frames with decoupled masonry infills: considering in-plane and out-of-plane load interaction effects","authors":"Aleksa Milijaš,&nbsp;Marko Marinković,&nbsp;Christoph Butenweg,&nbsp;Sven Klinkel","doi":"10.1007/s10518-024-02012-w","DOIUrl":"10.1007/s10518-024-02012-w","url":null,"abstract":"<div><p>Masonry infills are frequently employed as both outer and inner partitions in reinforced concrete (RC) frame structures due to their outstanding characteristics in terms of energy efficiency, fire resistance and sound isolation. However, common construction practice typically involves the mortar connection between masonry infills and RC frames. For this reason, the unforeseen frame-infill interaction takes part under seismic loading, which leads to severe and uncontrollable damage to masonry infills. This interaction also causes damage or even the collapse of the RC frames and thus of the whole structures. The poor performance of infilled RC frame structures in recent earthquake events is a strong motivation for the development of innovative engineering solutions, which aim to mitigate the detrimental effects of frame-infill interaction. This article introduces an innovative decoupling system founded on the concept of decoupling the RC frame from the masonry infill. The decoupling is achieved by inserting elastomeric material between the masonry infill and RC frame. The properly designed decoupling system allows infill activation only at high in-plane drifts. Simultaneously, it provides boundary conditions for seismic loads acting perpendicular to the infill plane. Firstly, the article explains the design of the masonry infill with the decoupling system and its installation. Afterwards, the results of small specimen tests carried out to determine the load-bearing capacity of the decoupling system are presented. Furthermore, the article discusses the findings of an extensive experimental campaign conducted on nine real-size RC frames with decoupled infills subjected to separate and combined in-plane and out-of-plane loadings. In addition to different loading types, various infill configurations are considered – solid infill, infill with centric window, and infill with centric door opening. Finally, the experimental results of RC frames with decoupled infills are compared with the experimental results of traditionally infilled RC frames, which were tested within the framework of the same project. The thorough evaluation and comparison of the experimental findings demonstrate the significant improvement of seismic performance of infilled RC frames if the decoupling system is applied.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 15","pages":"7489 - 7546"},"PeriodicalIF":3.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-02012-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seismicity in Central America (1520–2020) and Earthquake catalog compilation for seismic hazard assessments
IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-11-12 DOI: 10.1007/s10518-024-02059-9
Carlos Gamboa-Canté, Mario Arroyo-Solórzano, Belén Benito, Jorge Aguilar, Ivonne G. Arroyo, Eduardo Camacho-Astigarrabia, Diego Castro, Omar Flores, Lepolt Linkimer, Martha Griselda Marroquin, Luis Mixco-Durán, Wilfried Strauch, Emilio Talavera, Gerson Valle, Robin Yani-Quiyuch

Central America is a seismically active region located in a tectonic setting dominated by the subduction zone between the Cocos and Caribbean plates, transform boundaries between the North American and Caribbean plates, and local or crustal faulting with some of the most important fault systems aligned with the volcanic arc. Combining seismic data from various Central American seismic agency catalogs covering the period from 1520 to 2020, we present an updated regional earthquake catalog for the region. Fourteen databases containing seismic events from local and regional agencies were collected for different time periods, homogenized to moment magnitude (Mw), and subsequently unified using a prioritization criteria approach. We analyzed to the data to identify and remove duplicate earthquakes, prioritizing records with the lowest RMS value, depth consistent with their location based on the region’s crustal thickness, and magnitudes in accordance with historical reports or bibliographic sources. Additionally, significant seismic events (Mw ≥ 6.0) were carefully reviewed based on their epicentral locations and magnitudes, according on reliable publications. The earthquake catalog compiled includes a total of 260 548 earthquakes, for which we conducted a descriptive, spatiotemporal statistical analysis, as well as estimations of the magnitude of completeness (Mc) and declustering. Among the most important results, we highlight recent completeness periods for magnitudes Mw < 5.0. Geographically, seismic zones with better Mc are directly related to either good seismic network coverage or high seismicity rates in the region. As regards declustering, the Reasenberg declustering method considers several main shocks with ~ 76% of the earthquakes compared to the initial catalog and the Uhrhammer method considers  ~ 51% as main shocks.

{"title":"Seismicity in Central America (1520–2020) and Earthquake catalog compilation for seismic hazard assessments","authors":"Carlos Gamboa-Canté,&nbsp;Mario Arroyo-Solórzano,&nbsp;Belén Benito,&nbsp;Jorge Aguilar,&nbsp;Ivonne G. Arroyo,&nbsp;Eduardo Camacho-Astigarrabia,&nbsp;Diego Castro,&nbsp;Omar Flores,&nbsp;Lepolt Linkimer,&nbsp;Martha Griselda Marroquin,&nbsp;Luis Mixco-Durán,&nbsp;Wilfried Strauch,&nbsp;Emilio Talavera,&nbsp;Gerson Valle,&nbsp;Robin Yani-Quiyuch","doi":"10.1007/s10518-024-02059-9","DOIUrl":"10.1007/s10518-024-02059-9","url":null,"abstract":"<div><p>Central America is a seismically active region located in a tectonic setting dominated by the subduction zone between the Cocos and Caribbean plates, transform boundaries between the North American and Caribbean plates, and local or crustal faulting with some of the most important fault systems aligned with the volcanic arc. Combining seismic data from various Central American seismic agency catalogs covering the period from 1520 to 2020, we present an updated regional earthquake catalog for the region. Fourteen databases containing seismic events from local and regional agencies were collected for different time periods, homogenized to moment magnitude (M<sub>w</sub>), and subsequently unified using a prioritization criteria approach. We analyzed to the data to identify and remove duplicate earthquakes, prioritizing records with the lowest RMS value, depth consistent with their location based on the region’s crustal thickness, and magnitudes in accordance with historical reports or bibliographic sources. Additionally, significant seismic events (M<sub>w</sub> ≥ 6.0) were carefully reviewed based on their epicentral locations and magnitudes, according on reliable publications. The earthquake catalog compiled includes a total of 260 548 earthquakes, for which we conducted a descriptive, spatiotemporal statistical analysis, as well as estimations of the magnitude of completeness (Mc) and declustering. Among the most important results, we highlight recent completeness periods for magnitudes M<sub>w</sub> &lt; 5.0. Geographically, seismic zones with better Mc are directly related to either good seismic network coverage or high seismicity rates in the region. As regards declustering, the Reasenberg declustering method considers several main shocks with ~ 76% of the earthquakes compared to the initial catalog and the Uhrhammer method considers  ~ 51% as main shocks.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 15","pages":"7201 - 7234"},"PeriodicalIF":3.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extended Bouc-Wen model identification using shaking table test data of ageing RC bridge piers
IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-11-07 DOI: 10.1007/s10518-024-02057-x
Xiao Ge, Yan-Hui Liu, Yu-Qing Yang, Nicholas A. Alexander, Mohammad M. Kashani

In scientific research or engineering design, analysis with a large amount of repeating (e.g. incremental dynamic analysis, fragility analysis) is needed. In this process, low-order models require less computational cost compared with sophisticated finite element models. This paper explores the feasibility of identifying an extended Bouc-Wen model with input ground motion and structural responses of displacement and acceleration recorded in the shaking table tests. The parameters to be estimated are selected based on their sensitivity. A boundary of the unknown parameters is designated based on their physical meaning or empirical values. Genetic algorithm is applied to search for the optimal fitting of the extended Bouc-Wen model. The simulated results are compared with the experimental results in terms of hysteresis and time-varying stiffness/frequency during the test.

{"title":"Extended Bouc-Wen model identification using shaking table test data of ageing RC bridge piers","authors":"Xiao Ge,&nbsp;Yan-Hui Liu,&nbsp;Yu-Qing Yang,&nbsp;Nicholas A. Alexander,&nbsp;Mohammad M. Kashani","doi":"10.1007/s10518-024-02057-x","DOIUrl":"10.1007/s10518-024-02057-x","url":null,"abstract":"<div><p>In scientific research or engineering design, analysis with a large amount of repeating (e.g. incremental dynamic analysis, fragility analysis) is needed. In this process, low-order models require less computational cost compared with sophisticated finite element models. This paper explores the feasibility of identifying an extended Bouc-Wen model with input ground motion and structural responses of displacement and acceleration recorded in the shaking table tests. The parameters to be estimated are selected based on their sensitivity. A boundary of the unknown parameters is designated based on their physical meaning or empirical values. Genetic algorithm is applied to search for the optimal fitting of the extended Bouc-Wen model. The simulated results are compared with the experimental results in terms of hysteresis and time-varying stiffness/frequency during the test.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 15","pages":"7415 - 7437"},"PeriodicalIF":3.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seismic vulnerability of a pre-code, reinforced concrete, apartment-block building
IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-11-01 DOI: 10.1007/s10518-024-02054-0
Shir Parizat, Ronnie Kamai, Yehezkel Shaked, Assaf Shmerling

This research studies the Damage State Probability of a pre-code reinforced concrete apartment block building designed for gravity loads only. The study refers to the moderate damage state associated with apparent cracking and the onset of concrete spalling that exposes the transverse reinforcement. This damage state is chosen for the analysis because it is highly correlated with the number of displaced households in the case of a damaging earthquake. We analyze the structural inelastic earthquake response using 50 ground acceleration records to create the fragility curve function for four ground motion intensity measures. From the four intensity measures used in this study, the peak-ground velocity is found to be most highly correlated to the damage state probability of the analyzed structure. Because this structural type is very common throughout Israel, including in towns close to the active Dead Sea fault, near-fault effects are considered in the analysis but are found to be relatively insignificant due to the dynamic properties of the analyzed building. Finally, a potential retrofit solution is proposed, incorporating financial and serviceability limitations. The proposed retrofit effectiveness is made clear by comparing the fragility curves with and without the suggested retrofit. For example, the horizontal peak acceleration required for a 50% probability of achieving the damage state is increased from 0.18 g to 0.32 g for the original and retrofitted building, respectively. The analysis also shows that the generic curves currently in the Hazus platform, which is widely used for national risk analysis in Israel, overestimate the earthquake resilience of the addressed building and should, therefore, be updated and replaced with more accurately obtained curves.

{"title":"Seismic vulnerability of a pre-code, reinforced concrete, apartment-block building","authors":"Shir Parizat,&nbsp;Ronnie Kamai,&nbsp;Yehezkel Shaked,&nbsp;Assaf Shmerling","doi":"10.1007/s10518-024-02054-0","DOIUrl":"10.1007/s10518-024-02054-0","url":null,"abstract":"<div><p>This research studies the Damage State Probability of a pre-code reinforced concrete apartment block building designed for gravity loads only. The study refers to the moderate damage state associated with apparent cracking and the onset of concrete spalling that exposes the transverse reinforcement. This damage state is chosen for the analysis because it is highly correlated with the number of displaced households in the case of a damaging earthquake. We analyze the structural inelastic earthquake response using 50 ground acceleration records to create the fragility curve function for four ground motion intensity measures. From the four intensity measures used in this study, the peak-ground velocity is found to be most highly correlated to the damage state probability of the analyzed structure. Because this structural type is very common throughout Israel, including in towns close to the active Dead Sea fault, near-fault effects are considered in the analysis but are found to be relatively insignificant due to the dynamic properties of the analyzed building. Finally, a potential retrofit solution is proposed, incorporating financial and serviceability limitations. The proposed retrofit effectiveness is made clear by comparing the fragility curves with and without the suggested retrofit. For example, the horizontal peak acceleration required for a 50% probability of achieving the damage state is increased from 0.18 g to 0.32 g for the original and retrofitted building, respectively. The analysis also shows that the generic curves currently in the Hazus platform, which is widely used for national risk analysis in Israel, overestimate the earthquake resilience of the addressed building and should, therefore, be updated and replaced with more accurately obtained curves.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 15","pages":"7547 - 7587"},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-02054-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial coherency analysis of seismic motions from a hard rock site dense array in Busan, Korea
IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-10-29 DOI: 10.1007/s10518-024-02048-y
Yonghee Lee, Dongyeon Lee, Hak-Sung Kim, Jeong-Seon Park, Dong-Yeoul Jung, Jungkyun Kim, Do Yeon Kim, Yongsun Lee, Duhee Park

We conducted a spatial coherency analysis of ground motion using earthquake recordings from a hard rock outcrop dense array situated at a nuclear power plant site in Busan, located in the south-eastern coast of Korea. Utilizing data from a total of 16 events occurring from July 2021 to June 2022, we computed the plane-wave, lagged, and unlagged coherency functions of both horizontal and vertical components. We also provided comprehensive comparisons with other empirical functions developed for rock sites. Notably, all reported rock site curves exhibit clear distinctions, emphasizing the site-specific nature of these curves. The observed coherency tends to be larger for harder sites, that happen to have higher Vs30 as well, at separation distances less than 50 m. The Busan array, being the hardest among the available rock site arrays in existing literature, demonstrated the highest coherency at short distances and higher frequencies (e.g. above 25 Hz). This observation could be attributed to the presence of hard rock layers that have relatively higher spatial homogeneity at the Busan array site than the others. However, at larger interstation distances (e.g., above 50 m), relatively lower coherency is observed at Busan array. This could be attributed to the particular shape of the array as the farther away stations in a pair are located on more heterogeneous grounds, and experience direction-dependent, phase-shifted seismic waves.

{"title":"Spatial coherency analysis of seismic motions from a hard rock site dense array in Busan, Korea","authors":"Yonghee Lee,&nbsp;Dongyeon Lee,&nbsp;Hak-Sung Kim,&nbsp;Jeong-Seon Park,&nbsp;Dong-Yeoul Jung,&nbsp;Jungkyun Kim,&nbsp;Do Yeon Kim,&nbsp;Yongsun Lee,&nbsp;Duhee Park","doi":"10.1007/s10518-024-02048-y","DOIUrl":"10.1007/s10518-024-02048-y","url":null,"abstract":"<div><p>We conducted a spatial coherency analysis of ground motion using earthquake recordings from a hard rock outcrop dense array situated at a nuclear power plant site in Busan, located in the south-eastern coast of Korea. Utilizing data from a total of 16 events occurring from July 2021 to June 2022, we computed the plane-wave, lagged, and unlagged coherency functions of both horizontal and vertical components. We also provided comprehensive comparisons with other empirical functions developed for rock sites. Notably, all reported rock site curves exhibit clear distinctions, emphasizing the site-specific nature of these curves. The observed coherency tends to be larger for harder sites, that happen to have higher <i>V</i><sub><i>s30</i></sub> as well, at separation distances less than 50 m. The Busan array, being the hardest among the available rock site arrays in existing literature, demonstrated the highest coherency at short distances and higher frequencies (e.g. above 25 Hz). This observation could be attributed to the presence of hard rock layers that have relatively higher spatial homogeneity at the Busan array site than the others. However, at larger interstation distances (e.g., above 50 m), relatively lower coherency is observed at Busan array. This could be attributed to the particular shape of the array as the farther away stations in a pair are located on more heterogeneous grounds, and experience direction-dependent, phase-shifted seismic waves.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 15","pages":"7235 - 7259"},"PeriodicalIF":3.8,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-attribute-based procedure for seismic loss scenario in a historical area
IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-10-28 DOI: 10.1007/s10518-024-02029-1
G. Mascheri, N. Chieffo, P. B. Lourenço

Seismic events have shown to be exceedingly damaging to structures over time, with serious social and economic consequences. As a result, large-scale seismic risk assessments are essential for reducing the potential damage from future earthquakes. Therefore, the proposed study attempts to examine the vulnerability and risk of unreinforced masonry buildings (URM) placed in aggregate conditions in a historical area of the city centre of Lisbon. To this purpose, a comprehensive exposure model was developed combining satellite remote sensing, GIS software, and census data. Subsequently, seismic hazard was evaluated in the area, considering both Peak Ground Acceleration (PGA) and macro-seismic intensity for different return periods (i.e. 2-50-100-475-975-2500-5000 years). Vulnerability was assessed by introducing a novel approach to earthquake risk assessment using Multi-Criteria Decision-Making methodologies. Specifically, the method employs the Analytic Hierarchy Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) computational methods to evaluate parameter weights and vulnerability index. Damage scenarios, fragility curves and mean damage ratios curves were provided to offer an overview of the vulnerability of the assets exposed to risk. Finally, the expected consequences were evaluated in terms of direct economic losses showing an economic loss of 595 M€ for a 475-years return period, while 1108 M€ for 5000-years. This study significantly enhances seismic analysis for urban areas by introducing a Multi-Criteria Approach. This method simplifies vulnerability assessment, ensuring ease of application and reproducibility. Its insights offer valuable support for disaster risk management decisions, facilitating the implementation of resilience and risk-reduction strategies.

{"title":"Multi-attribute-based procedure for seismic loss scenario in a historical area","authors":"G. Mascheri,&nbsp;N. Chieffo,&nbsp;P. B. Lourenço","doi":"10.1007/s10518-024-02029-1","DOIUrl":"10.1007/s10518-024-02029-1","url":null,"abstract":"<div><p>Seismic events have shown to be exceedingly damaging to structures over time, with serious social and economic consequences. As a result, large-scale seismic risk assessments are essential for reducing the potential damage from future earthquakes. Therefore, the proposed study attempts to examine the vulnerability and risk of unreinforced masonry buildings (URM) placed in aggregate conditions in a historical area of the city centre of Lisbon. To this purpose, a comprehensive exposure model was developed combining satellite remote sensing, GIS software, and census data. Subsequently, seismic hazard was evaluated in the area, considering both Peak Ground Acceleration (PGA) and macro-seismic intensity for different return periods (i.e. 2-50-100-475-975-2500-5000 years). Vulnerability was assessed by introducing a novel approach to earthquake risk assessment using Multi-Criteria Decision-Making methodologies. Specifically, the method employs the Analytic Hierarchy Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) computational methods to evaluate parameter weights and vulnerability index. Damage scenarios, fragility curves and mean damage ratios curves were provided to offer an overview of the vulnerability of the assets exposed to risk. Finally, the expected consequences were evaluated in terms of direct economic losses showing an economic loss of 595 M€ for a 475-years return period, while 1108 M€ for 5000-years. This study significantly enhances seismic analysis for urban areas by introducing a Multi-Criteria Approach. This method simplifies vulnerability assessment, ensuring ease of application and reproducibility. Its insights offer valuable support for disaster risk management decisions, facilitating the implementation of resilience and risk-reduction strategies.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 15","pages":"7323 - 7358"},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-02029-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An experimental and simulated investigation into the seismic performance of Chuan-dou timber structures with infilled walls
IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-10-28 DOI: 10.1007/s10518-024-02041-5
Jie Lan, Xiaoli Li, Shuai Wang, Lan Peng, Zuyin Zou, Wei Liang, Yusheng Zeng

The seismic performance of Chuan-dou timber structures was investigated. A 1:2 scale model of a Chuan-dou timber structure was constructed, with the bottom part filled with masonry and the remaining portions filled with gypsum board. Through quasistatic tests, we compared and studied the impact of whether the column foot is constrained on the seismic performance of Chuan-dou timber structures. The results indicate that when the horizontal displacement of the column foot is restricted, the force distribution pattern of the timber frame changes, and the lateral resistance capacity increases by approximately two times. The lateral force‒displacement relationship of the timber frame exhibits two stages, where the load in the second stage does not decrease as the displacement increases. Additionally, a simplified finite element model incorporating mortise−tenon (M−T) joints and column foot connections reflects the hysteresis performance of the bare timber frame. A simplified wall model that considers the rocking effect can be used to simulate the lateral force‒displacement relationship of the timber frame.

{"title":"An experimental and simulated investigation into the seismic performance of Chuan-dou timber structures with infilled walls","authors":"Jie Lan,&nbsp;Xiaoli Li,&nbsp;Shuai Wang,&nbsp;Lan Peng,&nbsp;Zuyin Zou,&nbsp;Wei Liang,&nbsp;Yusheng Zeng","doi":"10.1007/s10518-024-02041-5","DOIUrl":"10.1007/s10518-024-02041-5","url":null,"abstract":"<div><p>The seismic performance of Chuan-dou timber structures was investigated. A 1:2 scale model of a Chuan-dou timber structure was constructed, with the bottom part filled with masonry and the remaining portions filled with gypsum board. Through quasistatic tests, we compared and studied the impact of whether the column foot is constrained on the seismic performance of Chuan-dou timber structures. The results indicate that when the horizontal displacement of the column foot is restricted, the force distribution pattern of the timber frame changes, and the lateral resistance capacity increases by approximately two times. The lateral force‒displacement relationship of the timber frame exhibits two stages, where the load in the second stage does not decrease as the displacement increases. Additionally, a simplified finite element model incorporating mortise−tenon (M−T) joints and column foot connections reflects the hysteresis performance of the bare timber frame. A simplified wall model that considers the rocking effect can be used to simulate the lateral force‒displacement relationship of the timber frame.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 15","pages":"7383 - 7413"},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimum joint gap size in bridges with Ductile Piers
IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-10-28 DOI: 10.1007/s10518-024-02051-3
Yoel Michael Habteghebriel, Ioannis G. Mikes, Andreas J. Kappos

The present study puts forward a novel approach for seismic design of bridges, wherein the optimum joint gap size is one of the design parameters of the bridge; the methodology integrates the optimization of the joint gap with a ‘mainstream’ seismic design for energy dissipation in the piers. Another contribution of this study is the assessment of the effect of bridge configuration on the selection of the optimum joint gap sizes, focusing on the effect of pier height for bridges with ductile piers. It is found that designing bridges for optimal gap sizes in both directions leads to a notable reduction in pier reinforcement requirements when the aim is to satisfy the Code criteria while, at the same time, the safety margin against exceeding the specified performance criteria (limit states) remains practically unaffected. On the other hand, the required design effort inevitably increases. Regarding the effect of pier height, an interesting finding is that as piers increase in height, leading to increased flexibility and, hence, larger displacements, other components of the bridge, such as the abutment-backfill system, tend to become the critical ones in identifying the optimum gaps.

{"title":"Optimum joint gap size in bridges with Ductile Piers","authors":"Yoel Michael Habteghebriel,&nbsp;Ioannis G. Mikes,&nbsp;Andreas J. Kappos","doi":"10.1007/s10518-024-02051-3","DOIUrl":"10.1007/s10518-024-02051-3","url":null,"abstract":"<div><p>The present study puts forward a novel approach for seismic design of bridges, wherein the optimum joint gap size is one of the design parameters of the bridge; the methodology integrates the optimization of the joint gap with a ‘mainstream’ seismic design for energy dissipation in the piers. Another contribution of this study is the assessment of the effect of bridge configuration on the selection of the optimum joint gap sizes, focusing on the effect of pier height for bridges with ductile piers. It is found that designing bridges for optimal gap sizes in both directions leads to a notable reduction in pier reinforcement requirements when the aim is to satisfy the Code criteria while, at the same time, the safety margin against exceeding the specified performance criteria (limit states) remains practically unaffected. On the other hand, the required design effort inevitably increases. Regarding the effect of pier height, an interesting finding is that as piers increase in height, leading to increased flexibility and, hence, larger displacements, other components of the bridge, such as the abutment-backfill system, tend to become the critical ones in identifying the optimum gaps.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 15","pages":"7439 - 7464"},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bulletin of Earthquake Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1