Yuxia Zhang, Haojie Liu, Min Liu, Yitian Zhang, Chenjing Ding, Yunyun Gong
{"title":"Composite membrane containing phytic acid-functionalized metal-organic frameworks for enhanced ion selectivity","authors":"Yuxia Zhang, Haojie Liu, Min Liu, Yitian Zhang, Chenjing Ding, Yunyun Gong","doi":"10.1177/09540083241264625","DOIUrl":null,"url":null,"abstract":"The application of sulfonated poly (ether ether ketone) (SPEEK) membrane in vanadium redox flow batteries (VRFBs) is hindered by the trade-off between proton conductivity and ion selectivity. To optimize its performance, the metal-organic frameworks loaded with phytic acid (PA-UiO-66-NH<jats:sub>2</jats:sub>) are introduced into the SPEEK matrix to construct a proton-selective transport channel. Better proton conductivity and ion selectivity are achieved in composite membranes due to the unique porous structure and chemical characteristics of PA-UiO-66-NH<jats:sub>2</jats:sub> fillers. When the PA-UiO-66-NH<jats:sub>2</jats:sub> content is at 2 wt%, the S/PA-UiO-66-NH<jats:sub>2</jats:sub>-2 membrane exhibits higher proton conductivity (35.3 mS cm<jats:sup>−1</jats:sup>) and ion selectivity (41.0 × 10<jats:sup>3</jats:sup> S min cm<jats:sup>−3</jats:sup>) compared to other composite membranes, pristine SPEEK and commercial Nafion 212 membranes. As a result, the S/PA-UiO-66-NH<jats:sub>2</jats:sub>-2 membrane shows excellent energy efficiencies (88.1%-74.0%) at current densities ranging from 60 to 180 mA cm<jats:sup>−2</jats:sup>. The cell efficiencies maintain stability during the 300 times charge-discharge cycle, proving the outstanding stability and durability of the S/PA-UiO-66-NH<jats:sub>2</jats:sub>-2 membrane in a strong acidic and oxidizing environment. These results suggest that the combination of phytic acid and metal-organic framework can effectively improve the performance of the membranes, and it also can be further utilized to solve other challenges in the membrane separation field.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":"8 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09540083241264625","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The application of sulfonated poly (ether ether ketone) (SPEEK) membrane in vanadium redox flow batteries (VRFBs) is hindered by the trade-off between proton conductivity and ion selectivity. To optimize its performance, the metal-organic frameworks loaded with phytic acid (PA-UiO-66-NH2) are introduced into the SPEEK matrix to construct a proton-selective transport channel. Better proton conductivity and ion selectivity are achieved in composite membranes due to the unique porous structure and chemical characteristics of PA-UiO-66-NH2 fillers. When the PA-UiO-66-NH2 content is at 2 wt%, the S/PA-UiO-66-NH2-2 membrane exhibits higher proton conductivity (35.3 mS cm−1) and ion selectivity (41.0 × 103 S min cm−3) compared to other composite membranes, pristine SPEEK and commercial Nafion 212 membranes. As a result, the S/PA-UiO-66-NH2-2 membrane shows excellent energy efficiencies (88.1%-74.0%) at current densities ranging from 60 to 180 mA cm−2. The cell efficiencies maintain stability during the 300 times charge-discharge cycle, proving the outstanding stability and durability of the S/PA-UiO-66-NH2-2 membrane in a strong acidic and oxidizing environment. These results suggest that the combination of phytic acid and metal-organic framework can effectively improve the performance of the membranes, and it also can be further utilized to solve other challenges in the membrane separation field.
期刊介绍:
Health Services Management Research (HSMR) is an authoritative international peer-reviewed journal which publishes theoretically and empirically rigorous research on questions of enduring interest to health-care organizations and systems throughout the world. Examining the real issues confronting health services management, it provides an independent view and cutting edge evidence-based research to guide policy-making and management decision-making. HSMR aims to be a forum serving an international community of academics and researchers on the one hand and healthcare managers, executives, policymakers and clinicians and all health professionals on the other. HSMR wants to make a substantial contribution to both research and managerial practice, with particular emphasis placed on publishing studies which offer actionable findings and on promoting knowledge mobilisation toward theoretical advances. All papers are expected to be of interest and relevance to an international audience. HSMR aims at enhance communication between academics and practitioners concerned with developing, implementing, and analysing health management issues, reforms and innovations primarily in European health systems and in all countries with developed health systems. Papers can report research undertaken in a single country, but they need to locate and explain their findings in an international context, and in international literature.