Dielectric Bragg Reflector as Back Electrode for Semi-Transparent Organic Solar Cells with an Average Visible Transparency of 52%

IF 6 3区 工程技术 Q2 ENERGY & FUELS Solar RRL Pub Date : 2024-06-25 DOI:10.1002/solr.202400399
Leonie Pap, Bertolt Schirmacher, Esther Bloch, Clemens Baretzky, Birger Zimmermann, Uli Würfel
{"title":"Dielectric Bragg Reflector as Back Electrode for Semi-Transparent Organic Solar Cells with an Average Visible Transparency of 52%","authors":"Leonie Pap,&nbsp;Bertolt Schirmacher,&nbsp;Esther Bloch,&nbsp;Clemens Baretzky,&nbsp;Birger Zimmermann,&nbsp;Uli Würfel","doi":"10.1002/solr.202400399","DOIUrl":null,"url":null,"abstract":"<p>A crucial challenge in the development of semi-transparent solar cells is to maintain a reasonable power conversion efficiency (PCE) while reaching a high average visible transparency (AVT). Typically, organic semiconductors are favorable for this application since they can selectively absorb infrared light while transmitting visible light. This ability stems from limited electronic states at high(er) energies in contrast to inorganic semiconductors with their typical rise of the absorption coefficient toward higher photon energies. To increase PCE at high AVTs, a series of infrared dielectric Bragg reflectors is developed for semi-transparent organic solar cells. Using the multi-layered back electrode (TiO<sub>2</sub>|SiN|TiO<sub>2</sub>|AZO|Ag|AZO) with PV-X Plus as photoactive layer and a metal-free PEDOT:PSS top electrode, a light utilization efficiency (LUE = AVT × PCE) of up to 4.32% is achieved, together with an AVT of 47.9%. Although the short circuit current and AVT agree well with optical simulations, a low fill factor (FF) and partial shunting limit the overall device performance. Using ZnO and PFN-Br as additional electron transport layers and modifying the back electrode stack (TiO<sub>2</sub>|SiO<sub>2</sub>|TiO<sub>2</sub>|AZO|Ag|AZO) accordingly leads to an LUE of up to 4.6% with a remarkable AVT of 51.9% and a maximum PCE of 8.79%.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 16","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400399","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400399","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

A crucial challenge in the development of semi-transparent solar cells is to maintain a reasonable power conversion efficiency (PCE) while reaching a high average visible transparency (AVT). Typically, organic semiconductors are favorable for this application since they can selectively absorb infrared light while transmitting visible light. This ability stems from limited electronic states at high(er) energies in contrast to inorganic semiconductors with their typical rise of the absorption coefficient toward higher photon energies. To increase PCE at high AVTs, a series of infrared dielectric Bragg reflectors is developed for semi-transparent organic solar cells. Using the multi-layered back electrode (TiO2|SiN|TiO2|AZO|Ag|AZO) with PV-X Plus as photoactive layer and a metal-free PEDOT:PSS top electrode, a light utilization efficiency (LUE = AVT × PCE) of up to 4.32% is achieved, together with an AVT of 47.9%. Although the short circuit current and AVT agree well with optical simulations, a low fill factor (FF) and partial shunting limit the overall device performance. Using ZnO and PFN-Br as additional electron transport layers and modifying the back electrode stack (TiO2|SiO2|TiO2|AZO|Ag|AZO) accordingly leads to an LUE of up to 4.6% with a remarkable AVT of 51.9% and a maximum PCE of 8.79%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将介质布拉格反射器用作平均可见光透明度为 52% 的半透明有机太阳能电池的背电极
开发半透明太阳能电池的一个关键挑战是在达到较高平均可见光透明度(AVT)的同时保持合理的功率转换效率(PCE)。通常情况下,有机半导体有利于这种应用,因为它们可以选择性地吸收红外光,同时透射可见光。这种能力源于高能量下有限的电子状态,而无机半导体的吸收系数通常会随着光子能量的升高而升高。为了提高高 AVT 下的 PCE,我们为半透明有机太阳能电池开发了一系列红外介质布拉格反射器。利用以 PV-X Plus 为光活性层的多层背电极(TiO2|SiN|TiO2|AZO|Ag|AZO)和无金属 PEDOT:PSS 顶电极,实现了高达 4.32% 的光利用效率(LUE = AVT × PCE)和 47.9% 的 AVT。虽然短路电流和 AVT 与光学模拟结果十分吻合,但低填充因子(FF)和部分分流限制了器件的整体性能。使用 ZnO 和 PFN-Br 作为额外的电子传输层,并相应地修改背电极堆栈(TiO2|SiO2|TiO2|AZO|Ag|AZO),可使 LUE 达到 4.6%,显著的 AVT 为 51.9%,最大 PCE 为 8.79%。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
期刊最新文献
Masthead Revealing Defect Passivation and Charge Extraction by Ultrafast Spectroscopy in Perovskite Solar Cells through a Multifunctional Lewis Base Additive Approach Perovskite-Based Tandem Solar Cells Masthead Investigation of Grain Growth in Chalcopyrite CuInS2 Photoelectrodes Synthesized under Wet Chemical Conditions for Bias-Free Photoelectrochemical Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1