Analytical and numerical solutions for the boundary layer flow and heat transfer over a moving wedge in Casson fluid

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-06-21 DOI:10.1111/sapm.12727
Shrivatsa R. Joshi, Shreenivas R. Kirsur, Achala L. Nargund
{"title":"Analytical and numerical solutions for the boundary layer flow and heat transfer over a moving wedge in Casson fluid","authors":"Shrivatsa R. Joshi,&nbsp;Shreenivas R. Kirsur,&nbsp;Achala L. Nargund","doi":"10.1111/sapm.12727","DOIUrl":null,"url":null,"abstract":"<p>This paper presents exact, analytical, and numerical solutions to the two-dimensional Casson fluid boundary layer flow over a moving wedge with varying wall temperature. The boundary layer flow of the Casson fluid with varying wall temperature is governed by a system of partial differential equations called Prandtl boundary layer equations modified by Casson fluid. By applying similarity transformations the governing system of partial differential equations is reduced to a system of nonlinear ordinary differential equations called as the Falkner–Skan equation modified by Casson fluid flow with heat transfer (C-FSEHT). In the beginning, an exact solution of the C-FSEHT is obtained for the particular values of physical parameters (i.e., <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n <mo>=</mo>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\beta = -1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mtext>Pr</mtext>\n <mo>=</mo>\n <mfrac>\n <mi>c</mi>\n <mrow>\n <mi>c</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n <annotation>$\\text{Pr} = \\frac{c}{c+1}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$N = 0$</annotation>\n </semantics></math>, see nomenclature) in terms of two standard functions, namely error function and exponential function. Thus, obtained exact solution is then modified to obtain the analytical solution of C-FSEHT for general values of physical parameters, in terms of power series. The analysis of the asymptotic behavior of the problem, when the wedge velocity is very large (<span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\lambda \\rightarrow \\infty$</annotation>\n </semantics></math>), is performed using the Dirichlet series. A comparative analysis is performed using the Chebyshev collocation technique (CCT) to validate the obtained results in all the scenarios. The effect of governing parameters, which are the Casson parameter <span></span><math>\n <semantics>\n <mi>c</mi>\n <annotation>$c$</annotation>\n </semantics></math>, Hartree pressure gradient parameter <span></span><math>\n <semantics>\n <mi>β</mi>\n <annotation>$\\beta$</annotation>\n </semantics></math>, moving wedge parameter <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>$\\lambda$</annotation>\n </semantics></math>, Prandtl number <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mi>r</mi>\n </mrow>\n <annotation>$Pr$</annotation>\n </semantics></math>, and wedge temperature parameter <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> on the skin friction coefficient, temperature coefficient, velocity profiles, and temperature profiles is discussed in detail. Multiple solutions are found analytically for fixed values of governing parameters. The fact that an increase in the value of the Casson parameter (<span></span><math>\n <semantics>\n <mi>c</mi>\n <annotation>$c$</annotation>\n </semantics></math>) reduces the thickness of both velocity and temperature boundary layers, is also validated during the study.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents exact, analytical, and numerical solutions to the two-dimensional Casson fluid boundary layer flow over a moving wedge with varying wall temperature. The boundary layer flow of the Casson fluid with varying wall temperature is governed by a system of partial differential equations called Prandtl boundary layer equations modified by Casson fluid. By applying similarity transformations the governing system of partial differential equations is reduced to a system of nonlinear ordinary differential equations called as the Falkner–Skan equation modified by Casson fluid flow with heat transfer (C-FSEHT). In the beginning, an exact solution of the C-FSEHT is obtained for the particular values of physical parameters (i.e., β = 1 $\beta = -1$ , Pr = c c + 1 $\text{Pr} = \frac{c}{c+1}$ , N = 0 $N = 0$ , see nomenclature) in terms of two standard functions, namely error function and exponential function. Thus, obtained exact solution is then modified to obtain the analytical solution of C-FSEHT for general values of physical parameters, in terms of power series. The analysis of the asymptotic behavior of the problem, when the wedge velocity is very large ( λ $\lambda \rightarrow \infty$ ), is performed using the Dirichlet series. A comparative analysis is performed using the Chebyshev collocation technique (CCT) to validate the obtained results in all the scenarios. The effect of governing parameters, which are the Casson parameter c $c$ , Hartree pressure gradient parameter β $\beta$ , moving wedge parameter λ $\lambda$ , Prandtl number P r $Pr$ , and wedge temperature parameter N $N$ on the skin friction coefficient, temperature coefficient, velocity profiles, and temperature profiles is discussed in detail. Multiple solutions are found analytically for fixed values of governing parameters. The fact that an increase in the value of the Casson parameter ( c $c$ ) reduces the thickness of both velocity and temperature boundary layers, is also validated during the study.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卡松流体中移动楔上边界层流动和传热的分析与数值解法
本文提出了壁温变化的移动楔上二维卡松流体边界层流动的精确、分析和数值解。壁面温度变化的卡松流体边界层流动受一个称为普朗特边界层方程的偏微分方程系统的支配,该方程是由卡松流体修正的。通过应用相似性变换,支配偏微分方程系被简化为一个非线性常微分方程系,称为经卡逊流体热传递修正的 Falkner-Skan 方程(C-FSEHT)。首先,根据两个标准函数,即误差函数和指数函数,求得 C-FSEHT 在特定物理参数值(即 、 、 、 、 见术语表)下的精确解。因此,对所获得的精确解进行修改后,就可以用幂级数获得 C-FSEHT 对一般物理参数值的解析解。当楔形速度非常大()时,使用 Dirichlet 级数对问题的渐近行为进行分析。使用切比雪夫配位技术(CCT)进行了比较分析,以验证在所有情况下获得的结果。详细讨论了卡松参数、哈特里压力梯度参数、移动楔参数、普朗特数和楔温度参数等调节参数对皮肤摩擦系数、温度系数、速度剖面和温度剖面的影响。在调节参数值固定的情况下,可以通过分析找到多个解决方案。在研究过程中还验证了一个事实,即 Casson 参数()值的增加会减小速度和温度边界层的厚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1