Experimental and finite element analysis of tensile properties of oil palm trunk im–pregnated with epoxy

IF 3.1 Q2 MATERIALS SCIENCE, COMPOSITES Functional Composites and Structures Pub Date : 2024-06-20 DOI:10.1088/2631-6331/ad540d
F Nik Wan, A Abubakar, M J Suriani, A M Saat, A Fitriadhy, W M N Wan Nik, M S Abdul Majid, Z Z Mukhtar, R A Ilyas, N Mohd Nurazzi and M N F Norrrahim
{"title":"Experimental and finite element analysis of tensile properties of oil palm trunk im–pregnated with epoxy","authors":"F Nik Wan, A Abubakar, M J Suriani, A M Saat, A Fitriadhy, W M N Wan Nik, M S Abdul Majid, Z Z Mukhtar, R A Ilyas, N Mohd Nurazzi and M N F Norrrahim","doi":"10.1088/2631-6331/ad540d","DOIUrl":null,"url":null,"abstract":"This research focuses on determining the elastic properties from the development of a three-dimensional constitutive model of impregnated oil palm trunk reinforced with epoxy (OPTE) composite. The research aims to simulate the tensile behaviour of OPTE composite for finite element analysis and compared with the OPTE experimental results, respectively. The OPTE composites were manufactured by using one of the vacuum infusion techniques namely the vacuum-assisted resin transfer moulding technique. In this research, OPTE composite is considered as a unidirectional fibre due to the wood board in the resin. Tensile tests were conducted to provide the material properties as inputs into three-dimensional constitutive model. The tensile test was performed according to ASTM D3039. The test was divided into three zones including zone I (outer), zone II (middle) and zone III (inner). The three elastic constants (elastic modulus, shear modulus and Poisson’s ratio) of material properties were obtained from the tensile test data and theoretical equation. The model was developed in Abaqus software. The results from finite element method (FEM) were compared with the experimental results. There was a good agreement and promising results between FEM and the experimental data.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"28 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Composites and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-6331/ad540d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This research focuses on determining the elastic properties from the development of a three-dimensional constitutive model of impregnated oil palm trunk reinforced with epoxy (OPTE) composite. The research aims to simulate the tensile behaviour of OPTE composite for finite element analysis and compared with the OPTE experimental results, respectively. The OPTE composites were manufactured by using one of the vacuum infusion techniques namely the vacuum-assisted resin transfer moulding technique. In this research, OPTE composite is considered as a unidirectional fibre due to the wood board in the resin. Tensile tests were conducted to provide the material properties as inputs into three-dimensional constitutive model. The tensile test was performed according to ASTM D3039. The test was divided into three zones including zone I (outer), zone II (middle) and zone III (inner). The three elastic constants (elastic modulus, shear modulus and Poisson’s ratio) of material properties were obtained from the tensile test data and theoretical equation. The model was developed in Abaqus software. The results from finite element method (FEM) were compared with the experimental results. There was a good agreement and promising results between FEM and the experimental data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环氧树脂浸渍油棕树干拉伸性能的实验和有限元分析
本研究的重点是通过建立环氧树脂浸渍油棕树干增强(OPTE)复合材料的三维构成模型来确定其弹性特性。研究旨在通过有限元分析模拟 OPTE 复合材料的拉伸行为,并分别与 OPTE 的实验结果进行比较。OPTE 复合材料是通过真空灌注技术(即真空辅助树脂传递模塑技术)制造的。在这项研究中,由于树脂中含有木板,OPTE 复合材料被视为单向纤维。进行拉伸试验是为了提供材料特性,作为三维构成模型的输入。拉伸试验根据 ASTM D3039 标准进行。试验分为三个区域,包括 I 区(外侧)、II 区(中间)和 III 区(内侧)。材料特性的三个弹性常数(弹性模量、剪切模量和泊松比)是根据拉伸试验数据和理论方程求得的。模型是在 Abaqus 软件中建立的。将有限元法(FEM)得出的结果与实验结果进行了比较。结果表明,有限元法与实验数据之间存在良好的一致性,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Functional Composites and Structures
Functional Composites and Structures Materials Science-Materials Science (miscellaneous)
CiteScore
4.80
自引率
10.70%
发文量
33
期刊最新文献
Advanced doping method for highly conductive CNT fibers with enhanced thermal stability A simplified predictive model for the compression behavior of self-healing microcapsules using an empirical coefficient Development of multi droplet-based electricity generator system for energy harvesting improvement from a single droplet Measurement of the water absorption on hybrid carbon fibre prepreg waste composite and its impact on flexural performance Simulation of the tensile behaviour of biaxial knitted fabrics produced based on rib structure using a macro constitutive model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1