Securing Binarized Neural Networks via PUF-Based Key Management in Memristive Crossbar Arrays

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Embedded Systems Letters Pub Date : 2024-07-02 DOI:10.1109/LES.2024.3422294
Gokulnath Rajendran;Debajit Basak;Suman Deb;Anupam Chattopadhyay
{"title":"Securing Binarized Neural Networks via PUF-Based Key Management in Memristive Crossbar Arrays","authors":"Gokulnath Rajendran;Debajit Basak;Suman Deb;Anupam Chattopadhyay","doi":"10.1109/LES.2024.3422294","DOIUrl":null,"url":null,"abstract":"Binarized neural networks (BNNs) are a subset of deep neural networks proposed to consume less computational resources with a smaller energy budget. Recent studies showed that memristor-based in-memory computing architectures can be constructed to accelerate BNNs, with better performance compared to traditional CMOS technologies. The memristor nonvolatility utilized for in-memory computing poses a notable threat to theft attacks in the presence of adversaries with physical access. This motivates us to introduce two novel protection methodologies to safeguard the model parameters of BNNs in the memristive crossbar. We propose to take advantage of physical unclonable functions (PUFs), which can be implemented using memristor-based crossbars for protecting BNN. This feature provides superior security compared to the traditional stored-key-based schemes. We provide circuit-level hardware designs to implement our methodologies with negligible additional overhead compared to an unprotected design and detailed supporting analysis to validate our security claims.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"17 1","pages":"30-33"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10580955/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Binarized neural networks (BNNs) are a subset of deep neural networks proposed to consume less computational resources with a smaller energy budget. Recent studies showed that memristor-based in-memory computing architectures can be constructed to accelerate BNNs, with better performance compared to traditional CMOS technologies. The memristor nonvolatility utilized for in-memory computing poses a notable threat to theft attacks in the presence of adversaries with physical access. This motivates us to introduce two novel protection methodologies to safeguard the model parameters of BNNs in the memristive crossbar. We propose to take advantage of physical unclonable functions (PUFs), which can be implemented using memristor-based crossbars for protecting BNN. This feature provides superior security compared to the traditional stored-key-based schemes. We provide circuit-level hardware designs to implement our methodologies with negligible additional overhead compared to an unprotected design and detailed supporting analysis to validate our security claims.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 Memristive Crossbar 阵列中基于 PUF 的密钥管理确保二值化神经网络的安全
二值化神经网络(bnn)是深度神经网络的一个子集,以更小的能量预算消耗更少的计算资源而被提出。最近的研究表明,可以构建基于忆阻器的内存计算架构来加速bnn,与传统的CMOS技术相比,性能更好。用于内存计算的忆阻器非易失性在具有物理访问的对手存在的情况下对盗窃攻击构成了显著的威胁。这促使我们引入两种新的保护方法来保护记忆交叉棒中bnn的模型参数。我们建议利用物理不可克隆功能(puf)来保护BNN,这可以使用基于忆阻器的交叉棒来实现。与传统的基于存储密钥的方案相比,该特性提供了更高的安全性。我们提供电路级硬件设计来实现我们的方法,与未受保护的设计和详细的支持分析相比,可以忽略不计的额外开销来验证我们的安全性声明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
期刊最新文献
Table of Contents IEEE Embedded Systems Letters Publication Information Detecting Nonequivalence in Neural Networks Through In-Distribution Counterexample Generation The Upcoming Era of Specialized Models MdCSR: A Memory-Efficient Sparse Matrix Compression Format
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1