{"title":"Effect of NH3 addition on the preparation of nitrogen-doped carbon nanomaterials by flame synthesis method","authors":"Hui Zhou, Yuhang Yang, Fen Qiao, Run Hong, Hanfang Zhang, Huaqiang Chu","doi":"10.1007/s42823-024-00760-y","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrogen-doped carbon nanomaterials (N-CNMs) were prepared using Ni(NO<sub>3</sub>)<sub>2</sub> as a catalyst in the laminar diffusion flame. Doping the structure of carbon nanomaterials (CNMs) with nitrogen can significantly change the characteristics of CNMs. The purpose of this research is to study the effect of adding ammonia (NH<sub>3</sub>) on the evolution of CNMs structure in the laminar flame of ethylene. Raman analysis shows that the intensity ratio (I<sub>D</sub>/I<sub>G</sub>) of the D-band and G-band of N-CNMs increases and then decreases after the addition of NH<sub>3</sub>. The intensity ratio is a maximum of 0.99, which has a good degree of disorder and defect density. The binding distribution of nitrogen was analyzed by X-ray photoelectron spectroscopy (XPS), and a correlation was found between the amount of nitrogen and the morphology of N-CNMs. Nitrogen atoms predominantly present in the forms of pyrrolic-N, pyridinic-N, graphitized-N and oxidized-N, with a doping ratio of nitrogen atoms reaching up to 2.44 at.%. This study found that smaller nickel (Ni) nanoparticles were the main catalysts for carbon nanotubes (CNTs), and their synthesis followed the ‘hollow growth mechanism’ and carbon nanofibers (CNFs) were synthesized from larger Ni nanoparticles according to the ‘solid growth mechanism’. Furthermore, a growth mechanism for the synthesis of bamboo-like CNTs using a specific particle size of the Ni catalyst is proposed. It is noteworthy that the synthesis and modulation of high-performance N-CNMs by flame method represents a simple and efficient approach.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2343 - 2355"},"PeriodicalIF":5.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00760-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen-doped carbon nanomaterials (N-CNMs) were prepared using Ni(NO3)2 as a catalyst in the laminar diffusion flame. Doping the structure of carbon nanomaterials (CNMs) with nitrogen can significantly change the characteristics of CNMs. The purpose of this research is to study the effect of adding ammonia (NH3) on the evolution of CNMs structure in the laminar flame of ethylene. Raman analysis shows that the intensity ratio (ID/IG) of the D-band and G-band of N-CNMs increases and then decreases after the addition of NH3. The intensity ratio is a maximum of 0.99, which has a good degree of disorder and defect density. The binding distribution of nitrogen was analyzed by X-ray photoelectron spectroscopy (XPS), and a correlation was found between the amount of nitrogen and the morphology of N-CNMs. Nitrogen atoms predominantly present in the forms of pyrrolic-N, pyridinic-N, graphitized-N and oxidized-N, with a doping ratio of nitrogen atoms reaching up to 2.44 at.%. This study found that smaller nickel (Ni) nanoparticles were the main catalysts for carbon nanotubes (CNTs), and their synthesis followed the ‘hollow growth mechanism’ and carbon nanofibers (CNFs) were synthesized from larger Ni nanoparticles according to the ‘solid growth mechanism’. Furthermore, a growth mechanism for the synthesis of bamboo-like CNTs using a specific particle size of the Ni catalyst is proposed. It is noteworthy that the synthesis and modulation of high-performance N-CNMs by flame method represents a simple and efficient approach.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.