{"title":"Modulating the thermophysical properties of diamond/SiC composites via controlling the diamond graphitization","authors":"Xulei Wang, Yikang Li, Yabo Huang, Yalong Zhang, Pei Wang, Li Guan, Xinbo He, Rongjun Liu, Xuanhui Qu, Xiaoge Wu","doi":"10.1007/s42823-024-00767-5","DOIUrl":null,"url":null,"abstract":"<div><p>Diamond/SiC composites were prepared by vacuum silica vapor-phase infiltration of in situ silicon–carbon reaction, and the thermophysical properties of the composites were modulated by controlling diamond graphitizing. The effects of diamond surface state and vacuum silicon infiltration temperature on diamond graphitization were investigated, and the micro-morphology, phase composition, and properties of the composites were observed and characterized. The results show that diamond pretreatment can reduce the probability of graphitizing; when the penetration temperature is greater than 1600 °C, the diamond undergoes a graphitizing phase transition and the micro-morphology presents a lamellar shape. The thermal conductivity, density, and flexural strength of the composites increased and then decreased with the increase of penetration temperature in the experimentally designed range of penetration temperature. The variation of thermal expansion coefficients of composites prepared with different penetration temperatures ranged from 0.8 to 3.0 ppm/K when the temperature was between 50 and 400 °C.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2377 - 2388"},"PeriodicalIF":5.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00767-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Diamond/SiC composites were prepared by vacuum silica vapor-phase infiltration of in situ silicon–carbon reaction, and the thermophysical properties of the composites were modulated by controlling diamond graphitizing. The effects of diamond surface state and vacuum silicon infiltration temperature on diamond graphitization were investigated, and the micro-morphology, phase composition, and properties of the composites were observed and characterized. The results show that diamond pretreatment can reduce the probability of graphitizing; when the penetration temperature is greater than 1600 °C, the diamond undergoes a graphitizing phase transition and the micro-morphology presents a lamellar shape. The thermal conductivity, density, and flexural strength of the composites increased and then decreased with the increase of penetration temperature in the experimentally designed range of penetration temperature. The variation of thermal expansion coefficients of composites prepared with different penetration temperatures ranged from 0.8 to 3.0 ppm/K when the temperature was between 50 and 400 °C.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.