Optimizing Air Separation and LNG Cold Utilization: Energy Savings, Exergy Efficiency, and System Reliability

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Chemical Engineering & Technology Pub Date : 2024-06-27 DOI:10.1002/ceat.202400085
Bhalchandra Shingan, Murali Pujari, Adarsh Kumar Arya, Varunpratap Singh
{"title":"Optimizing Air Separation and LNG Cold Utilization: Energy Savings, Exergy Efficiency, and System Reliability","authors":"Bhalchandra Shingan,&nbsp;Murali Pujari,&nbsp;Adarsh Kumar Arya,&nbsp;Varunpratap Singh","doi":"10.1002/ceat.202400085","DOIUrl":null,"url":null,"abstract":"<p>Air separation processes are time-consuming and energy-intensive. Most of the energy used in air separation unit (ASU) is used for air compression. During the air compression process, some energy is lost, which is converted into waste heat. This wasted energy is used to warm liquefied natural gas (LNG). At some point, LNG ships will dock at an LNG regasification facility. Here, LNG is converted back to gas and supplied to the distribution and transmission systems. During the regasification process, cryogenic LNG has a huge opportunity for cold energy recovery. An innovative air separation process that is integrated with the cold utilization of LNG is presented in this study along with a thorough conceptual design and analysis. The results of this study show that producing high-purity oxygen and nitrogen, respectively, requires 0.28 kWh kg<sup>−1</sup> and 0.06 kWh kg<sup>−1</sup> of specific energies. Prior to integration with cold utilization of natural gas, 25 141.6 kW is needed for air compression. However, following integration, 10 554.6 kW of energy is needed, resulting in a 58.01 % energy savings. Exergy destruction as well as efficiency have been calculated for the primary components of the system. Sensitivity analysis is carried out to examine the effects of LNG streams on important parameters. In conclusion, a cryogenic ASU is integrated with an LNG-direct expansion cycle-organic Rankine cycle power cycle to supply the necessary power for operation and reduce extraneous power inputs. Overall, this integrated approach increases efficiency, lowers costs, benefits the environment, allows for flexibility and adaptability, and raises system dependability.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202400085","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Air separation processes are time-consuming and energy-intensive. Most of the energy used in air separation unit (ASU) is used for air compression. During the air compression process, some energy is lost, which is converted into waste heat. This wasted energy is used to warm liquefied natural gas (LNG). At some point, LNG ships will dock at an LNG regasification facility. Here, LNG is converted back to gas and supplied to the distribution and transmission systems. During the regasification process, cryogenic LNG has a huge opportunity for cold energy recovery. An innovative air separation process that is integrated with the cold utilization of LNG is presented in this study along with a thorough conceptual design and analysis. The results of this study show that producing high-purity oxygen and nitrogen, respectively, requires 0.28 kWh kg−1 and 0.06 kWh kg−1 of specific energies. Prior to integration with cold utilization of natural gas, 25 141.6 kW is needed for air compression. However, following integration, 10 554.6 kW of energy is needed, resulting in a 58.01 % energy savings. Exergy destruction as well as efficiency have been calculated for the primary components of the system. Sensitivity analysis is carried out to examine the effects of LNG streams on important parameters. In conclusion, a cryogenic ASU is integrated with an LNG-direct expansion cycle-organic Rankine cycle power cycle to supply the necessary power for operation and reduce extraneous power inputs. Overall, this integrated approach increases efficiency, lowers costs, benefits the environment, allows for flexibility and adaptability, and raises system dependability.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化空气分离和液化天然气冷利用:节能、放能效率和系统可靠性
空气分离过程耗时耗能。空气分离装置(ASU)中使用的大部分能源都用于空气压缩。在空气压缩过程中会损失一些能量,这些能量会转化为废热。这些废热被用来加热液化天然气 (LNG)。液化天然气船有时会停靠在液化天然气再气化设施。在这里,液化天然气被重新转化为天然气,并供应给配电和输电系统。在再气化过程中,低温液化天然气有巨大的冷能回收机会。本研究提出了一种与液化天然气冷利用相结合的创新空气分离工艺,并进行了全面的概念设计和分析。研究结果表明,生产高纯度氧气和氮气分别需要 0.28 kWh kg-1 和 0.06 kWh kg-1 的比能量。在整合天然气冷利用之前,空气压缩需要 25 141.6 千瓦。而在整合之后,只需要 10 554.6 千瓦的能量,从而节省了 58.01 % 的能源。计算了系统主要组件的放能损耗和效率。还进行了敏感性分析,以研究液化天然气流对重要参数的影响。总之,低温 ASU 与液化天然气-直接膨胀循环-有机郎肯循环动力循环相结合,可提供运行所需的动力,并减少外来动力输入。总之,这种集成方法提高了效率,降低了成本,有利于环保,具有灵活性和适应性,并提高了系统的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
期刊最新文献
Cover Picture: Chem. Eng. Technol. 11/2024 Editorial Board: Chem. Eng. Technol. 11/2024 Overview Contents: Chem. Eng. Technol. 11/2024 Photoelectrochemical Technology for Solar Fuel: Green Hydrogen, Carbon Dioxide Capture, and Ammonia Production Cover Picture: Chem. Eng. Technol. 10/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1