{"title":"Electrocatalytic Glucose Sensing in Sports Beverages and Serum Using Mxene/ZnO Composite Material","authors":"Xionghui Mi, Pingxia Wang, Hassan Rokni","doi":"10.1007/s11244-024-01975-z","DOIUrl":null,"url":null,"abstract":"<p>A new ZnO/MXene material was made using a simple hydrothermal method and heat treatment for measuring glucose without enzymes in sports drinks and human blood samples. The best ZnO/MXene-300 material, made at 150 °C and heated at 300 °C, had a large surface area of 152 m2/g, high current density of 1.12 mA/cm2, and low activation energy of 32.6 kJ/mol for glucose oxidation. The sensor could measure a wide range of glucose levels (0.01-12 mM) with a low detection limit (0.005 µM), worked well in the presence of other substances, remained stable (93.6% after 7 days), and gave consistent results (RSD of 3.2%). The material was tested by measuring glucose in sports drinks and blood samples, with measured values close to the actual values (96.4–104.5%) and high precision (RSDs of 2.8% and 3.8%). These results show that ZnO/MXene materials are promising for making sensitive and stable glucose sensors that don’t need enzymes.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"19 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11244-024-01975-z","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A new ZnO/MXene material was made using a simple hydrothermal method and heat treatment for measuring glucose without enzymes in sports drinks and human blood samples. The best ZnO/MXene-300 material, made at 150 °C and heated at 300 °C, had a large surface area of 152 m2/g, high current density of 1.12 mA/cm2, and low activation energy of 32.6 kJ/mol for glucose oxidation. The sensor could measure a wide range of glucose levels (0.01-12 mM) with a low detection limit (0.005 µM), worked well in the presence of other substances, remained stable (93.6% after 7 days), and gave consistent results (RSD of 3.2%). The material was tested by measuring glucose in sports drinks and blood samples, with measured values close to the actual values (96.4–104.5%) and high precision (RSDs of 2.8% and 3.8%). These results show that ZnO/MXene materials are promising for making sensitive and stable glucose sensors that don’t need enzymes.
期刊介绍:
Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief.
The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.