Heavy metal(loid)s transformation in dust at a lead smelting site

IF 3.7 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Central South University Pub Date : 2024-06-13 DOI:10.1007/s11771-024-5600-0
Wen-yan Gao, Kai-kai Wu, Ting Chen, Wai-chin Li, Hong-ren Chen, Yue-ru Chen, Hao Wu, Feng Zhu, Hai-dong Li, Chuan Wu, Sheng-guo Xue
{"title":"Heavy metal(loid)s transformation in dust at a lead smelting site","authors":"Wen-yan Gao, Kai-kai Wu, Ting Chen, Wai-chin Li, Hong-ren Chen, Yue-ru Chen, Hao Wu, Feng Zhu, Hai-dong Li, Chuan Wu, Sheng-guo Xue","doi":"10.1007/s11771-024-5600-0","DOIUrl":null,"url":null,"abstract":"<p>Emitted dust is the major contributor of heavy metal(loid)s in soils located near lead (Pb) smelters, but the mechanisms for transfer of the heavy metal(loid)s in dust are uncertain. The study systematically investigated the geochemical behaviors and liberation mechanisms of heavy metal(loid)s in this process. The results show that Pb, Zn, Cd, and As in two types of dust samples exceeded the allowable standards, and about 80% of Pb and Zn were present in mobile and bioavailable fractions. More than 70% of arsenic in bottom-blowing furnace dust existed in an acid-soluble fraction, while 60% of cadmium in reducing and fuming dust existed in the acid-soluble fraction. Pb isotope results showed that 97.12% of the Pb in the topsoil came from dust emitted during the smelting process. XRD and MLA results illustrated that PbSO<sub>4</sub>, ZnSO<sub>4</sub>, and CdSO<sub>4</sub> were the major minerals in the dust, while the mineral phases of the topsoil were mainly quartz, calcite, dolomite, and muscovite. Based on a combination of mineralogical investigations and geochemical modelling, our findings suggest that liberation of the Pb, Zn, and Cd was primarily dependent on sulfate minerals under acidic conditions, whereas the liberation of As was related to adsorption by iron hydroxide.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5600-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Emitted dust is the major contributor of heavy metal(loid)s in soils located near lead (Pb) smelters, but the mechanisms for transfer of the heavy metal(loid)s in dust are uncertain. The study systematically investigated the geochemical behaviors and liberation mechanisms of heavy metal(loid)s in this process. The results show that Pb, Zn, Cd, and As in two types of dust samples exceeded the allowable standards, and about 80% of Pb and Zn were present in mobile and bioavailable fractions. More than 70% of arsenic in bottom-blowing furnace dust existed in an acid-soluble fraction, while 60% of cadmium in reducing and fuming dust existed in the acid-soluble fraction. Pb isotope results showed that 97.12% of the Pb in the topsoil came from dust emitted during the smelting process. XRD and MLA results illustrated that PbSO4, ZnSO4, and CdSO4 were the major minerals in the dust, while the mineral phases of the topsoil were mainly quartz, calcite, dolomite, and muscovite. Based on a combination of mineralogical investigations and geochemical modelling, our findings suggest that liberation of the Pb, Zn, and Cd was primarily dependent on sulfate minerals under acidic conditions, whereas the liberation of As was related to adsorption by iron hydroxide.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铅冶炼厂粉尘中重金属的变化
排放的粉尘是铅(Pb)冶炼厂附近土壤中重金属(loid)的主要来源,但粉尘中重金属(loid)的转移机制尚不确定。本研究系统研究了这一过程中重金属(loid)的地球化学行为和释放机制。结果表明,两种粉尘样品中的铅、锌、镉和砷均超过了允许标准,其中约 80% 的铅、锌存在于可移动和生物可利用的组分中。底吹炉粉尘中超过 70% 的砷存在于酸溶性部分,而还原性粉尘和发烟粉尘中 60% 的镉存在于酸溶性部分。铅同位素结果表明,表层土壤中 97.12% 的铅来自冶炼过程中排放的粉尘。XRD 和 MLA 结果表明,PbSO4、ZnSO4 和 CdSO4 是粉尘中的主要矿物,而表土中的矿物相主要是石英、方解石、白云石和麝香石。结合矿物学研究和地球化学模型,我们的研究结果表明,铅、锌和镉的释放主要依赖于酸性条件下的硫酸盐矿物,而砷的释放则与氢氧化铁的吸附有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Central South University
Journal of Central South University METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.10
自引率
6.80%
发文量
242
审稿时长
2-4 weeks
期刊介绍: Focuses on the latest research achievements in mining and metallurgy Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering
期刊最新文献
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion Influence of rare earth element erbium on microstructures and properties of as-cast 8030 aluminum alloy The improvement of large-scale-region landslide susceptibility mapping accuracy by transfer learning Energy evolution model and energy response characteristics of freeze-thaw damaged sandstone under uniaxial compression A hybrid ventilation scheme applied to bi-directional excavation tunnel construction with a long inclined shaft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1