Cooperative effect of citric acid and pyrite on the slow-release of silicon from coal gangue and the stabilization of arsenic: Implications for soil remediation

IF 3.7 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Central South University Pub Date : 2024-06-13 DOI:10.1007/s11771-024-5633-4
Xin Lyu, Sheng-yuan Feng, Hong-zhi Zhan, Jian-lan Lei, Zi-gang Shu, Pei-wen Zhou, Xi-lin Chai
{"title":"Cooperative effect of citric acid and pyrite on the slow-release of silicon from coal gangue and the stabilization of arsenic: Implications for soil remediation","authors":"Xin Lyu, Sheng-yuan Feng, Hong-zhi Zhan, Jian-lan Lei, Zi-gang Shu, Pei-wen Zhou, Xi-lin Chai","doi":"10.1007/s11771-024-5633-4","DOIUrl":null,"url":null,"abstract":"<p>The application of coal gangue as a soil amendment shows promise in increasing silicon availability, potentially serving as a silicon fertilizer in agriculture. However, the rapid release of silicon from coal gangue compared to the slow absorption by plants hinders its effective use. This study explored the formation of iron-containing secondary minerals on coal gangue surfaces using pyrite and citric acid to stabilize arsenic in contaminated soils and slow down silicon leaching. After co-ball milling, the silicon leaching rates for coal gangue and the composite C@PC-10 were 0.44% and 0.22% at 60 min, and 1.11% and 1.38% at 120 min, respectively. Stabilization tests showed that C@PC-10 achieved removal efficiencies of 71.3% for water-extractable arsenic and 55.9% for NaHCO<sub>3</sub>-extractable arsenic over 30 d. Acid-soluble arsenic decreased from 32.8% to 24.1%, while residual arsenic increased from 26.5% to 36.9%. Acid rain simulations demonstrated that C@PC-10 limited leachate arsenic concentration to 28.9 mg/L over 120 d, compared to untreated soil with 59.8 mg/L. Analytical techniques like XRD, XPS, and FT-IR confirmed that pyrite oxidation during ball milling led to the formation of jarosite and FeOOH, enhancing arsenic adsorption capacity. Overall, the C@PC-10 composite shows promise as a remediation material for controlled silicate release and arsenic mitigation in soil environments.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"48 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5633-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The application of coal gangue as a soil amendment shows promise in increasing silicon availability, potentially serving as a silicon fertilizer in agriculture. However, the rapid release of silicon from coal gangue compared to the slow absorption by plants hinders its effective use. This study explored the formation of iron-containing secondary minerals on coal gangue surfaces using pyrite and citric acid to stabilize arsenic in contaminated soils and slow down silicon leaching. After co-ball milling, the silicon leaching rates for coal gangue and the composite C@PC-10 were 0.44% and 0.22% at 60 min, and 1.11% and 1.38% at 120 min, respectively. Stabilization tests showed that C@PC-10 achieved removal efficiencies of 71.3% for water-extractable arsenic and 55.9% for NaHCO3-extractable arsenic over 30 d. Acid-soluble arsenic decreased from 32.8% to 24.1%, while residual arsenic increased from 26.5% to 36.9%. Acid rain simulations demonstrated that C@PC-10 limited leachate arsenic concentration to 28.9 mg/L over 120 d, compared to untreated soil with 59.8 mg/L. Analytical techniques like XRD, XPS, and FT-IR confirmed that pyrite oxidation during ball milling led to the formation of jarosite and FeOOH, enhancing arsenic adsorption capacity. Overall, the C@PC-10 composite shows promise as a remediation material for controlled silicate release and arsenic mitigation in soil environments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柠檬酸和黄铁矿对煤矸石中硅的缓释和砷的稳定的协同效应:对土壤修复的影响
应用煤矸石作为土壤改良剂有望增加硅的可用性,并有可能成为农业中的硅肥。然而,与植物的缓慢吸收相比,煤矸石中硅的快速释放阻碍了其有效利用。本研究探讨了利用黄铁矿和柠檬酸在煤矸石表面形成含铁的次生矿物,以稳定受污染土壤中的砷并减缓硅的沥滤。经过共球研磨后,煤矸石和复合材料 C@PC-10 的硅浸出率在 60 分钟时分别为 0.44% 和 0.22%,在 120 分钟时分别为 1.11% 和 1.38%。稳定化试验表明,在 30 天内,C@PC-10 对水提取砷的去除率为 71.3%,对 NaHCO3 提取砷的去除率为 55.9%;酸溶性砷从 32.8%降至 24.1%,而残余砷从 26.5%增至 36.9%。酸雨模拟表明,在 120 天内,C@PC-10 将沥滤液中的砷浓度限制在 28.9 mg/L,而未经处理的土壤中的砷浓度为 59.8 mg/L。X射线衍射、XPS和傅立叶变换红外光谱等分析技术证实,在球磨过程中黄铁矿被氧化,形成了黄铁矿石和FeOOH,从而提高了砷的吸附能力。总之,C@PC-10 复合材料有望成为土壤环境中用于控制硅酸盐释放和砷缓解的修复材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Central South University
Journal of Central South University METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.10
自引率
6.80%
发文量
242
审稿时长
2-4 weeks
期刊介绍: Focuses on the latest research achievements in mining and metallurgy Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering
期刊最新文献
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion Influence of rare earth element erbium on microstructures and properties of as-cast 8030 aluminum alloy The improvement of large-scale-region landslide susceptibility mapping accuracy by transfer learning Energy evolution model and energy response characteristics of freeze-thaw damaged sandstone under uniaxial compression A hybrid ventilation scheme applied to bi-directional excavation tunnel construction with a long inclined shaft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1