{"title":"Single-atom catalysis: a promising avenue for precisely controlling reaction pathways","authors":"Xiaobo Yang, Xuning Li, Yanqiang Huang","doi":"10.1007/s11705-024-2434-0","DOIUrl":null,"url":null,"abstract":"<div><p>Single-atom catalysts (SACs), characterized by exceptionally high atom efficiency, have garnered significant attention across various catalytic reactions. Recent studies have showcased SACs with robust capabilities for precise catalysis, specifically targeting reactions along designated pathways. This review focuses on the advances in the precise activation and reconstruction of chemical bonds on SACs, including precise activation of C–O and C–H bonds and selective couplings involving C–C and C–N bonds. Our discussion begins with a thorough exploration of the factors that render SACs skilled in precise catalytic processes, encompassing the narrow <i>d</i>-band electronic state of single atom site resulting in the adsorption tendency, isolate site resulting in unique adsorption structure, and synergy effect of a single atom site with its neighbors. Subsequently, we elaborate on the applications of SACs in electrocatalysis and thermocatalysis including four prominent reactions, namely, electrochemical CO<sub>2</sub> reduction, urea electrochemical synthesis, CO<sub>2</sub> hydrogenation, and CH<sub>4</sub> activation. Then the concept of rational design of SACs for precisely controlling reaction pathways is discussed from the aspects of pore structure design, support-metal strong interaction, and support hydrophilic/hydrophobic. Finally, we summarize the challenges encountered by SACs in the field of precise catalytic processes and outline prospects for their further development in this domain.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2434-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Single-atom catalysts (SACs), characterized by exceptionally high atom efficiency, have garnered significant attention across various catalytic reactions. Recent studies have showcased SACs with robust capabilities for precise catalysis, specifically targeting reactions along designated pathways. This review focuses on the advances in the precise activation and reconstruction of chemical bonds on SACs, including precise activation of C–O and C–H bonds and selective couplings involving C–C and C–N bonds. Our discussion begins with a thorough exploration of the factors that render SACs skilled in precise catalytic processes, encompassing the narrow d-band electronic state of single atom site resulting in the adsorption tendency, isolate site resulting in unique adsorption structure, and synergy effect of a single atom site with its neighbors. Subsequently, we elaborate on the applications of SACs in electrocatalysis and thermocatalysis including four prominent reactions, namely, electrochemical CO2 reduction, urea electrochemical synthesis, CO2 hydrogenation, and CH4 activation. Then the concept of rational design of SACs for precisely controlling reaction pathways is discussed from the aspects of pore structure design, support-metal strong interaction, and support hydrophilic/hydrophobic. Finally, we summarize the challenges encountered by SACs in the field of precise catalytic processes and outline prospects for their further development in this domain.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.