Ultra-sensitive detection of PFASs using surface enhanced Raman scattering and machine learning: a promising approach for environmental analysis†

IF 3.5 Q2 CHEMISTRY, ANALYTICAL Sensors & diagnostics Pub Date : 2024-07-02 DOI:10.1039/D4SD00052H
Joshua C. Rothstein, Jiaheng Cui, Yanjun Yang, Xianyan Chen and Yiping Zhao
{"title":"Ultra-sensitive detection of PFASs using surface enhanced Raman scattering and machine learning: a promising approach for environmental analysis†","authors":"Joshua C. Rothstein, Jiaheng Cui, Yanjun Yang, Xianyan Chen and Yiping Zhao","doi":"10.1039/D4SD00052H","DOIUrl":null,"url":null,"abstract":"<p >The contamination of per- and polyfluoroalkyl substances (PFAS) in drinking water presents a significant concern and requires a simple, portable detection method. This study aims to demonstrate the effectiveness of Raman and surface-enhanced Raman scattering (SERS) spectroscopies for identifying and quantifying various PFASs in water. Experimental Raman spectra of different PFASs reveal unique characteristic peaks that enable their classification. While direct SERS measurements from silver nanorod (AgNR) substrates may not exhibit distinct PFAS characteristic peaks, the presence of PFAS on SERS substrates induces noticeable spectral changes. By integration with machine learning (ML) techniques, these SERS spectra can be used to successfully differentiate and quantify PFOA in water, achieving a limit of detection (LOD) of 1 ppt. Modifying the AgNR substrates with cysteine and 6-mercapto-1-hexanol enhances the differentiation and quantification capabilities of SERS-ML. Despite alkanethiol molecules affecting spectral features, PFAS and PFOS concentrations produce observable spectral variations. A support vector machine model achieves 93% accuracy in differentiating PFOA, PFOS, and references, independent of concentration. A support vector regression model further establishes LODs of 1 ppt for PFOA and 4.28 ppt for PFOS. By removing spectra with concentrations lower than LODs, the classification accuracy is improved to 95%.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 8","pages":" 1272-1284"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00052h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sd/d4sd00052h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The contamination of per- and polyfluoroalkyl substances (PFAS) in drinking water presents a significant concern and requires a simple, portable detection method. This study aims to demonstrate the effectiveness of Raman and surface-enhanced Raman scattering (SERS) spectroscopies for identifying and quantifying various PFASs in water. Experimental Raman spectra of different PFASs reveal unique characteristic peaks that enable their classification. While direct SERS measurements from silver nanorod (AgNR) substrates may not exhibit distinct PFAS characteristic peaks, the presence of PFAS on SERS substrates induces noticeable spectral changes. By integration with machine learning (ML) techniques, these SERS spectra can be used to successfully differentiate and quantify PFOA in water, achieving a limit of detection (LOD) of 1 ppt. Modifying the AgNR substrates with cysteine and 6-mercapto-1-hexanol enhances the differentiation and quantification capabilities of SERS-ML. Despite alkanethiol molecules affecting spectral features, PFAS and PFOS concentrations produce observable spectral variations. A support vector machine model achieves 93% accuracy in differentiating PFOA, PFOS, and references, independent of concentration. A support vector regression model further establishes LODs of 1 ppt for PFOA and 4.28 ppt for PFOS. By removing spectra with concentrations lower than LODs, the classification accuracy is improved to 95%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用表面增强拉曼散射和机器学习对 PFAS 进行超灵敏检测:一种前景广阔的环境分析方法
饮用水中的全氟烷基和多氟烷基物质(PFAS)污染是一个重大问题,需要一种简单、便携的检测方法。本研究旨在证明拉曼光谱和表面增强拉曼散射(SERS)光谱在识别和量化水中各种 PFAS 方面的有效性。不同全氟辛烷磺酸的实验拉曼光谱显示出独特的特征峰,可对其进行分类。虽然银纳米棒(AgNR)基底的直接 SERS 测量可能不会显示出明显的 PFAS 特征峰,但 SERS 基底上 PFAS 的存在会引起明显的光谱变化。通过与机器学习(ML)技术相结合,这些 SERS 光谱可用于成功区分和量化水中的全氟辛烷磺酸,检测限(LOD)达到 1 ppt。用半胱氨酸和 6-巯基-1-己醇修饰 AgNR 底物增强了 SERS-ML 的分辨和定量能力。尽管烷硫醇分子会影响光谱特征,但全氟辛烷磺酸和全氟辛烷磺酸的浓度会产生可观察到的光谱变化。支持向量机模型在区分全氟辛烷磺酸、全氟辛烷磺酸和参照物方面达到了 93% 的准确率,与浓度无关。支持向量回归模型进一步确定了 PFOA 的检测限为 1 ppt,PFOS 的检测限为 4.28 ppt。通过去除浓度低于 LOD 的光谱,分类准确率提高到 95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
期刊最新文献
Back cover Pursuing theranostics: a multimodal architecture approach. A review on Ti3C2Tx based nanocomposites for the electrochemical sensing of clinically relevant biomarkers Back cover Introduction to Supramolecular Sensors: From Molecules to Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1