Jesse Jorna, Byron J. Adams, Zachary T. Aanderud, Paul B. Frandsen, Cristina Takacs‐Vesbach, Sonia Kéfi
{"title":"The underground network: facilitation in soil bacteria","authors":"Jesse Jorna, Byron J. Adams, Zachary T. Aanderud, Paul B. Frandsen, Cristina Takacs‐Vesbach, Sonia Kéfi","doi":"10.1111/oik.10299","DOIUrl":null,"url":null,"abstract":"Our understanding of the fundamental role that soil bacteria play in the structure and functioning of Earth's ecosystems is ever expanding, but insight into the nature of interactions within these bacterial communities remains rudimentary. Bacterial facilitation may enhance the establishment, growth, and succession of eukaryotic biota, elevating the complexity and diversity of the entire soil community and thereby modulating multiple ecosystem functions. Global climate change often alters soil bacterial community composition, which, in turn, impacts other dependent biota. However, the impact of climate change on facilitation within bacterial communities remains poorly understood even though it may have important cascading consequences for entire ecosystems. The wealth of metagenomic data currently being generated gives community ecologists the ability to investigate bacterial facilitation in the natural world and how it affects ecological systems responses to climate change. Here, we review current evidence demonstrating the importance of facilitation in promoting emergent properties such as community diversity, ecosystem functioning, and resilience to climate change in soil bacterial communities. We show that a synthesis is currently missing between the abundant data, newly developed models and a coherent ecological framework that addresses these emergent properties. We highlight that including phylogenetic information, the physicochemical environment, and species‐specific ecologies can improve our ability to infer interactions in natural soil communities. Following these recommendations, studies on bacterial facilitation will be an important piece of the puzzle to understand the consequences of global change on ecological communities and a model to advance our understanding of facilitation in complex communities more generally.","PeriodicalId":19496,"journal":{"name":"Oikos","volume":"16 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oikos","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/oik.10299","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Our understanding of the fundamental role that soil bacteria play in the structure and functioning of Earth's ecosystems is ever expanding, but insight into the nature of interactions within these bacterial communities remains rudimentary. Bacterial facilitation may enhance the establishment, growth, and succession of eukaryotic biota, elevating the complexity and diversity of the entire soil community and thereby modulating multiple ecosystem functions. Global climate change often alters soil bacterial community composition, which, in turn, impacts other dependent biota. However, the impact of climate change on facilitation within bacterial communities remains poorly understood even though it may have important cascading consequences for entire ecosystems. The wealth of metagenomic data currently being generated gives community ecologists the ability to investigate bacterial facilitation in the natural world and how it affects ecological systems responses to climate change. Here, we review current evidence demonstrating the importance of facilitation in promoting emergent properties such as community diversity, ecosystem functioning, and resilience to climate change in soil bacterial communities. We show that a synthesis is currently missing between the abundant data, newly developed models and a coherent ecological framework that addresses these emergent properties. We highlight that including phylogenetic information, the physicochemical environment, and species‐specific ecologies can improve our ability to infer interactions in natural soil communities. Following these recommendations, studies on bacterial facilitation will be an important piece of the puzzle to understand the consequences of global change on ecological communities and a model to advance our understanding of facilitation in complex communities more generally.
期刊介绍:
Oikos publishes original and innovative research on all aspects of ecology, defined as organism-environment interactions at various spatiotemporal scales, so including macroecology and evolutionary ecology. Emphasis is on theoretical and empirical work aimed at generalization and synthesis across taxa, systems and ecological disciplines. Papers can contribute to new developments in ecology by reporting novel theory or critical empirical results, and "synthesis" can include developing new theory, tests of general hypotheses, or bringing together established or emerging areas of ecology. Confirming or extending the established literature, by for example showing results that are novel for a new taxon, or purely applied research, is given low priority.