{"title":"Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion","authors":"","doi":"10.1016/j.cjsc.2024.100380","DOIUrl":null,"url":null,"abstract":"<div><p><span>Organic radicals feature versatile unpaired electrons<span> key for photoelectronic<span><span> and biomedical applications but remain difficult to access in stable concentrated forms. We disclose easy generation of stable, concentrated radicals from various alkynyl phenyl motifs, including 1) sulfur-functionalized alkyne-rich organic linkers in crystalline frameworks; 2) the powders of these molecules alone; 3) simple diethynylbenzenes. For Zr-based framework, the generation of radical-rich crystalline framework was achieved by thermal annealing in the range of 300–450 °C. For terminal alkynes, </span>electron paramagnetic resonance signals (EPR, indicative of free radicals) arise after air exposure or mild heating (</span></span></span><em>e.g.</em>, 70 °C). Further heating (<em>e.g.</em>, 150 °C for 3 h) raises the radical concentrations up to 3.30 mol kg<sup>−1</sup>. For more stable internal alkynes, transformations into porous radical solids can also be triggered, albeit at higher temperatures (<em>e.g.</em><span>, 250–500 °C). The resulted radical-containing solids are porous, stable to air as well as heat (up to 300–450 °C) and exhibit photothermal conversion<span><span> and solar-driven water evaporation capacity. The formation of radicals can be ascribed to extensive </span>alkyne<span> cyclizations, forming defects, dangling bonds and the associated radicals stabilized by polycyclic π-systems.</span></span></span></p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 8","pages":"Article 100380"},"PeriodicalIF":5.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586124002265","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Organic radicals feature versatile unpaired electrons key for photoelectronic and biomedical applications but remain difficult to access in stable concentrated forms. We disclose easy generation of stable, concentrated radicals from various alkynyl phenyl motifs, including 1) sulfur-functionalized alkyne-rich organic linkers in crystalline frameworks; 2) the powders of these molecules alone; 3) simple diethynylbenzenes. For Zr-based framework, the generation of radical-rich crystalline framework was achieved by thermal annealing in the range of 300–450 °C. For terminal alkynes, electron paramagnetic resonance signals (EPR, indicative of free radicals) arise after air exposure or mild heating (e.g., 70 °C). Further heating (e.g., 150 °C for 3 h) raises the radical concentrations up to 3.30 mol kg−1. For more stable internal alkynes, transformations into porous radical solids can also be triggered, albeit at higher temperatures (e.g., 250–500 °C). The resulted radical-containing solids are porous, stable to air as well as heat (up to 300–450 °C) and exhibit photothermal conversion and solar-driven water evaporation capacity. The formation of radicals can be ascribed to extensive alkyne cyclizations, forming defects, dangling bonds and the associated radicals stabilized by polycyclic π-systems.
期刊介绍:
Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.