Revisiting the structures and energies of β-SiC $$\left\langle {001} \right\rangle$$ symmetric tilt grain boundaries

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Research Pub Date : 2024-07-02 DOI:10.1557/s43578-024-01375-9
Liang Wang, Lei Zhang, Wenshan Yu
{"title":"Revisiting the structures and energies of β-SiC $$\\left\\langle {001} \\right\\rangle$$ symmetric tilt grain boundaries","authors":"Liang Wang, Lei Zhang, Wenshan Yu","doi":"10.1557/s43578-024-01375-9","DOIUrl":null,"url":null,"abstract":"<p>Structures and energetics of grain boundaries (GBs) can significantly modulate various properties of polycrystals. Previous studies focus on the ground-state GB structures of <i>β</i>-SiC while the metastable states are poorly understood. Herein, atomistic simulations are employed to generate metastable structures for a series of <span>\\(\\left\\langle {001} \\right\\rangle\\)</span> symmetric tilt GBs in <i>β</i>-SiC. Structural units (SUs) based on the edge dislocation core structures are defined to characterize the GB structures. All GB structures can be divided into four types according to their different constituent SUs. Various distributions, orderings and combinations of SUs can generate multiple metastable structures with different GB energies. Furthermore, our calculations of low-angle GB energies agree well with the theoretical predictions based on the continuum elasticity theory. Our findings not only enhance the fundamental understanding of the (meta)stable grain boundary energetics and structural characteristics but also have significant implications for micro-structure design and grain boundary engineering in polycrystalline SiC.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01375-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Structures and energetics of grain boundaries (GBs) can significantly modulate various properties of polycrystals. Previous studies focus on the ground-state GB structures of β-SiC while the metastable states are poorly understood. Herein, atomistic simulations are employed to generate metastable structures for a series of \(\left\langle {001} \right\rangle\) symmetric tilt GBs in β-SiC. Structural units (SUs) based on the edge dislocation core structures are defined to characterize the GB structures. All GB structures can be divided into four types according to their different constituent SUs. Various distributions, orderings and combinations of SUs can generate multiple metastable structures with different GB energies. Furthermore, our calculations of low-angle GB energies agree well with the theoretical predictions based on the continuum elasticity theory. Our findings not only enhance the fundamental understanding of the (meta)stable grain boundary energetics and structural characteristics but also have significant implications for micro-structure design and grain boundary engineering in polycrystalline SiC.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新审视 β-SiC $$left\langle {001} \right\rangle$$ 对称倾斜晶界的结构和能量
晶界(GB)的结构和能量能显著调节多晶体的各种特性。以往的研究主要集中于β-SiC的基态晶界结构,而对其蜕变态却知之甚少。在此,我们采用原子模拟的方法生成了一系列β-SiC中的(左/角{001} 右/角)对称倾斜GB的可迁移结构。根据边缘位错核心结构定义了结构单元(SU),以表征国标结构。根据不同的组成 SU,所有 GB 结构可分为四种类型。SU的不同分布、排序和组合可产生具有不同GB能量的多种可迁移结构。此外,我们对低角度 GB 能量的计算与基于连续弹性理论的理论预测非常吻合。我们的发现不仅加深了对(元)稳定晶界能量和结构特征的基本理解,而且对多晶 SiC 的微结构设计和晶界工程具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Research
Journal of Materials Research 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.70%
发文量
362
审稿时长
2.8 months
期刊介绍: Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome. • Novel materials discovery • Electronic, photonic and magnetic materials • Energy Conversion and storage materials • New thermal and structural materials • Soft materials • Biomaterials and related topics • Nanoscale science and technology • Advances in materials characterization methods and techniques • Computational materials science, modeling and theory
期刊最新文献
Effect of Co concentration on cation distribution and magnetic and magneto-optical properties of CoxZn1-xFe2O4 nanoparticles synthesized with citrate precursor method Fabrication and characterization of nanocomposite hydrogel based N-succinyl chitosan/oxidized tragacanth gum/silver nanoparticles for biomedical materials Development of a processing route for the fabrication of thin hierarchically porous copper self-standing structure using direct ink writing and sintering for electrochemical energy storage application Rapidly synthesis of AuM (M = Pt, Pd) hexagonals/graphene quantum dots nanostructures and their application for non-enzyme hydrogen peroxide detection Nanocomposites Fe2O3/PNR loaded partially reduced rGO/GCE as an electrochemical probe for selective determination of uric acid and dopamine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1