{"title":"Electrochemical deposition of super-conductive Cu/MXene laminated composite foils with low thermal expansion coefficient","authors":"Chenyu Gao, Jikun Deng, Jiaxing He, Zechuan Wang, Yuanyuan Sheng, Junwu Liu, Honghai Zhong, Guoqing Tong, Yang Jiang","doi":"10.1557/s43578-024-01367-9","DOIUrl":null,"url":null,"abstract":"<p>A novel Cu/Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> laminated composite foil was prepared using a combination of electroplating and electrophoretic deposition. The results indicate that the average thermal expansion coefficient of the Cu/ Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> composite foil decreased by 11.26% compared to that of pure copper. Due to the high electron mobility of Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> and the favorable Cu/ Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> interface, the electrical conductivity of the Cu/ Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> composite foil exceeded that of pure copper by 8.7%, reaching 6.2147 × 10<sup>7</sup> S·m<sup>−1</sup>, and its thermal conductivity increased from 381.5 W/m·K to 423.5 W/m·K. The study revealed that a thinner, looser Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> layer with fewer layers is more favorable for copper penetration and filling, enabling a continuous network-like structure and resulting in significantly improved thermal and electrical properties of the composite copper foil. These findings position the Cu/Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> foil as a promising candidate for electronic encapsulation and super-conductivity.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":"28 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01367-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel Cu/Ti3C2TX laminated composite foil was prepared using a combination of electroplating and electrophoretic deposition. The results indicate that the average thermal expansion coefficient of the Cu/ Ti3C2TX composite foil decreased by 11.26% compared to that of pure copper. Due to the high electron mobility of Ti3C2TX and the favorable Cu/ Ti3C2TX interface, the electrical conductivity of the Cu/ Ti3C2TX composite foil exceeded that of pure copper by 8.7%, reaching 6.2147 × 107 S·m−1, and its thermal conductivity increased from 381.5 W/m·K to 423.5 W/m·K. The study revealed that a thinner, looser Ti3C2TX layer with fewer layers is more favorable for copper penetration and filling, enabling a continuous network-like structure and resulting in significantly improved thermal and electrical properties of the composite copper foil. These findings position the Cu/Ti3C2TX foil as a promising candidate for electronic encapsulation and super-conductivity.
期刊介绍:
Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome.
• Novel materials discovery
• Electronic, photonic and magnetic materials
• Energy Conversion and storage materials
• New thermal and structural materials
• Soft materials
• Biomaterials and related topics
• Nanoscale science and technology
• Advances in materials characterization methods and techniques
• Computational materials science, modeling and theory