Kai-Hung Yang, Yizhong Liu, Shelby A. Skoog, Roger J. Narayan
{"title":"Physico-chemical properties and cytotoxicity of gelatin methacryloyl crosslinked with nanoparticle photoinitiator","authors":"Kai-Hung Yang, Yizhong Liu, Shelby A. Skoog, Roger J. Narayan","doi":"10.1557/s43578-024-01369-7","DOIUrl":null,"url":null,"abstract":"<p>Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO) fabricated into nanoparticle form with increased water dispersibility has enabled broader applications for the bioprinting of hydrogel scaffolds. In this study, the use of TPO NP as a photoinitiator for bioprinting gelatin methacrylate (GelMA) was compared with commonly used lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) photoinitiator by assessing the physico-chemical properties, mechanical strength, gelation kinetics, resistance to flow, absorptivity in different solvents, and biological responses. The results demonstrated that the physico-chemical and mechanical properties of the GelMA were similar using LAP and TPO nanoparticles (NP) for crosslinking. The significant cytotoxicity observed in cells exposed to the GelMA with TPO NP suggests that cell-embedded bioprinting may not be feasible and that removal of toxicant may be needed to utilize GelMA scaffolds crosslinked with TPO NP for biological applications. The results of this study provide a framework for future studies that will consider the microstructure and in vitro properties of GelMA.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01369-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO) fabricated into nanoparticle form with increased water dispersibility has enabled broader applications for the bioprinting of hydrogel scaffolds. In this study, the use of TPO NP as a photoinitiator for bioprinting gelatin methacrylate (GelMA) was compared with commonly used lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) photoinitiator by assessing the physico-chemical properties, mechanical strength, gelation kinetics, resistance to flow, absorptivity in different solvents, and biological responses. The results demonstrated that the physico-chemical and mechanical properties of the GelMA were similar using LAP and TPO nanoparticles (NP) for crosslinking. The significant cytotoxicity observed in cells exposed to the GelMA with TPO NP suggests that cell-embedded bioprinting may not be feasible and that removal of toxicant may be needed to utilize GelMA scaffolds crosslinked with TPO NP for biological applications. The results of this study provide a framework for future studies that will consider the microstructure and in vitro properties of GelMA.
期刊介绍:
Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome.
• Novel materials discovery
• Electronic, photonic and magnetic materials
• Energy Conversion and storage materials
• New thermal and structural materials
• Soft materials
• Biomaterials and related topics
• Nanoscale science and technology
• Advances in materials characterization methods and techniques
• Computational materials science, modeling and theory