Zanthoxylum alkylamides alleviate cell cycle arrest and oxidative stress to retard d-galactose-induced aging

IF 2.4 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY Food Science and Biotechnology Pub Date : 2024-07-02 DOI:10.1007/s10068-024-01599-9
Yuping Zhu, Pan Yang, Suzhen Zhai, Chunlin Zhang
{"title":"Zanthoxylum alkylamides alleviate cell cycle arrest and oxidative stress to retard d-galactose-induced aging","authors":"Yuping Zhu,&nbsp;Pan Yang,&nbsp;Suzhen Zhai,&nbsp;Chunlin Zhang","doi":"10.1007/s10068-024-01599-9","DOIUrl":null,"url":null,"abstract":"<div><p>During the aging process, the abilities to maintain homeostasis and resist stress decrease, leading to degenerative changes in tissues and organs. The pathological process of aging is characterized by oxidative stress and cell cycle arrest. <i>Zanthoxylum</i> alkylamides (ZA) can mitigate hepatic oxidative stress. However, whether ZA can delay aging and the underlying mechanisms are unclear. Herein, ZA were shown to inhibit <span>d</span>-galactose-induced aging in a dose-dependent manner. ZA activated CyclinD1 and CyclinE2 to exert anti-cell cycle arrest effects and activated the Nrf2/HO1 pathway to reduce the accumulated intracellular reactive oxygen species (ROS) and improve antioxidant capacity. Moreover, motor coordination and spontaneous exploration were improved in aging mice administered ZA. Overall, ZA alleviated cell cycle arrest and oxidative stress to delay <span>d</span>-galactose-induced aging.</p></div>","PeriodicalId":566,"journal":{"name":"Food Science and Biotechnology","volume":"33 15","pages":"3541 - 3552"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s10068-024-01599-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

During the aging process, the abilities to maintain homeostasis and resist stress decrease, leading to degenerative changes in tissues and organs. The pathological process of aging is characterized by oxidative stress and cell cycle arrest. Zanthoxylum alkylamides (ZA) can mitigate hepatic oxidative stress. However, whether ZA can delay aging and the underlying mechanisms are unclear. Herein, ZA were shown to inhibit d-galactose-induced aging in a dose-dependent manner. ZA activated CyclinD1 and CyclinE2 to exert anti-cell cycle arrest effects and activated the Nrf2/HO1 pathway to reduce the accumulated intracellular reactive oxygen species (ROS) and improve antioxidant capacity. Moreover, motor coordination and spontaneous exploration were improved in aging mice administered ZA. Overall, ZA alleviated cell cycle arrest and oxidative stress to delay d-galactose-induced aging.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zanthoxylum 烷基酰胺可缓解细胞周期停滞和氧化应激,从而延缓 d-半乳糖诱导的衰老
在衰老过程中,维持体内平衡和抵抗压力的能力下降,导致组织和器官发生退行性变化。衰老的病理过程以氧化应激和细胞周期停滞为特征。Zanthoxylum 烷基酰胺(ZA)可以缓解肝脏氧化应激。然而,ZA是否能延缓衰老及其内在机制尚不清楚。研究表明,ZA能以剂量依赖的方式抑制d-半乳糖诱导的衰老。ZA能激活CyclinD1和CyclinE2以发挥抗细胞周期停滞的作用,并能激活Nrf2/HO1通路以减少细胞内积累的活性氧(ROS)并提高抗氧化能力。此外,服用ZA的老龄小鼠的运动协调性和自发性探索能力也得到了改善。总之,ZA能缓解细胞周期停滞和氧化应激,从而延缓d-半乳糖诱导的衰老。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Science and Biotechnology
Food Science and Biotechnology FOOD SCIENCE & TECHNOLOGY-
CiteScore
5.40
自引率
3.40%
发文量
174
审稿时长
2.3 months
期刊介绍: The FSB journal covers food chemistry and analysis for compositional and physiological activity changes, food hygiene and toxicology, food microbiology and biotechnology, and food engineering involved in during and after food processing through physical, chemical, and biological ways. Consumer perception and sensory evaluation on processed foods are accepted only when they are relevant to the laboratory research work. As a general rule, manuscripts dealing with analysis and efficacy of extracts from natural resources prior to the processing or without any related food processing may not be considered within the scope of the journal. The FSB journal does not deal with only local interest and a lack of significant scientific merit. The main scope of our journal is seeking for human health and wellness through constructive works and new findings in food science and biotechnology field.
期刊最新文献
Sinapine suppresses ROS-induced C2C12 myoblast cell death through MAPK and autophagy pathways Sustainable food systems transformation in the face of climate change: strategies, challenges, and policy implications Sweet flavor compounds produced by the endophytic fungus Talaromyces funiculosus Nutraceutical delivery vehicles: enhanced stability, bioavailability Enhanced oxygen barrier properties of sodium alginate coatings in humid environments: ionic crosslinking of sodium alginate by calcium ions released from calcium hydrogen phosphate and calcium carbonate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1