Anisotropic Weakly Over-Penalised Symmetric Interior Penalty Method for the Stokes Equation

IF 3.3 2区 数学 Q1 MATHEMATICS, APPLIED Journal of Scientific Computing Pub Date : 2024-07-02 DOI:10.1007/s10915-024-02598-y
Hiroki Ishizaka
{"title":"Anisotropic Weakly Over-Penalised Symmetric Interior Penalty Method for the Stokes Equation","authors":"Hiroki Ishizaka","doi":"10.1007/s10915-024-02598-y","DOIUrl":null,"url":null,"abstract":"<p>In this study, we investigate an anisotropic weakly over-penalised symmetric interior penalty method for the Stokes equation on convex domains. Our approach is a simple discontinuous Galerkin method similar to the Crouzeix–Raviart finite element method. As our primary contribution, we show a new proof for the consistency term, which allows us to obtain an estimate of the anisotropic consistency error. The key idea of the proof is to apply the relation between the Raviart–Thomas finite element space and a discontinuous space. While inf-sup stable schemes of the discontinuous Galerkin method on shape-regular mesh partitions have been widely discussed, our results show that the Stokes element satisfies the inf-sup condition on anisotropic meshes. Furthermore, we provide an error estimate in an energy norm on anisotropic meshes. In numerical experiments, we compare calculation results for standard and anisotropic mesh partitions.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"160 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02598-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate an anisotropic weakly over-penalised symmetric interior penalty method for the Stokes equation on convex domains. Our approach is a simple discontinuous Galerkin method similar to the Crouzeix–Raviart finite element method. As our primary contribution, we show a new proof for the consistency term, which allows us to obtain an estimate of the anisotropic consistency error. The key idea of the proof is to apply the relation between the Raviart–Thomas finite element space and a discontinuous space. While inf-sup stable schemes of the discontinuous Galerkin method on shape-regular mesh partitions have been widely discussed, our results show that the Stokes element satisfies the inf-sup condition on anisotropic meshes. Furthermore, we provide an error estimate in an energy norm on anisotropic meshes. In numerical experiments, we compare calculation results for standard and anisotropic mesh partitions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斯托克斯方程的各向异性弱过度惩罚对称内部惩罚法
在本研究中,我们研究了凸域上斯托克斯方程的各向异性弱过惩罚对称内部惩罚方法。我们的方法是一种简单的非连续 Galerkin 方法,类似于 Crouzeix-Raviart 有限元方法。作为我们的主要贡献,我们展示了一致性项的新证明,这使我们能够获得各向异性一致性误差的估计值。证明的关键思路是应用 Raviart-Thomas 有限元空间与非连续空间之间的关系。虽然形状规则网格分区上的非连续 Galerkin 方法的 inf-sup 稳定方案已被广泛讨论,但我们的结果表明斯托克斯元素在各向异性网格上满足 inf-sup 条件。此外,我们还提供了各向异性网格上能量规范的误差估计。在数值实验中,我们比较了标准网格分区和各向异性网格分区的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
期刊最新文献
Stochastic Conformal Integrators for Linearly Damped Stochastic Poisson Systems. Inf-sup stable space-time Local Discontinuous Galerkin method for the heat equation. Automatic Differentiation is Essential in Training Neural Networks for Solving Differential Equations. Homotopy Relaxation Training Algorithms for Infinite-Width Two-Layer ReLU Neural Networks. A Posteriori Error Analysis for a Coupled Stokes-Poroelastic System with Multiple Compartments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1