{"title":"Fatigue performance analysis of fine aggregate matrix using a newly designed experimental strategy and viscoelastic continuum damage theory","authors":"Zhifei Tan, Hui Li, Zhen Leng, Binbin Yin, Danning Li, Fuliao Zou, Peng Cao","doi":"10.1617/s11527-024-02338-6","DOIUrl":null,"url":null,"abstract":"<div><p>Fine aggregate matrix (FAM), as the matrix phase in asphalt concrete (AC), significantly affects the fatigue behavior of AC. To accurately assess the mechanical properties of FAM, a newly designed experimental strategy for FAM testing was developed, and the viscoelastic continuum damage theory (VECD) theory was applied to analyze FAM’s fatigue cracking characteristics. In this study, a dumbbell-shaped geometry for dynamic shear rheometer testing was designed and verified through the FE-aided method. Subsequently, three AC mixtures’ FAM specimens with this special geometry were fabricated for the frequency sweep and linear amplitude sweep tests. Results showed that the specially designed specimens effectively capture the viscoelastic and fatigue properties of FAM with high replicability. Analyses based on the VECD theory indicated that FAM of porous asphalt (FAM(PA13)), featuring a higher asphalt content, exhibits a significant reduction in pseudo stiffness with increasing damage at the initial stage, but the reduction rate diminishes as damage progresses when compared to the other two FAMs. It was speculated that the higher aggregate content in FAM of dense-graded AC mixture (FAM(AC20) induces stress concentrations in the asphalt mastic near the protrusion areas of aggregates, thereby rendering the sample more susceptible to damage. The proposed methods will be readily extended to characterize other mechanical properties of FAM.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-024-02338-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02338-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fine aggregate matrix (FAM), as the matrix phase in asphalt concrete (AC), significantly affects the fatigue behavior of AC. To accurately assess the mechanical properties of FAM, a newly designed experimental strategy for FAM testing was developed, and the viscoelastic continuum damage theory (VECD) theory was applied to analyze FAM’s fatigue cracking characteristics. In this study, a dumbbell-shaped geometry for dynamic shear rheometer testing was designed and verified through the FE-aided method. Subsequently, three AC mixtures’ FAM specimens with this special geometry were fabricated for the frequency sweep and linear amplitude sweep tests. Results showed that the specially designed specimens effectively capture the viscoelastic and fatigue properties of FAM with high replicability. Analyses based on the VECD theory indicated that FAM of porous asphalt (FAM(PA13)), featuring a higher asphalt content, exhibits a significant reduction in pseudo stiffness with increasing damage at the initial stage, but the reduction rate diminishes as damage progresses when compared to the other two FAMs. It was speculated that the higher aggregate content in FAM of dense-graded AC mixture (FAM(AC20) induces stress concentrations in the asphalt mastic near the protrusion areas of aggregates, thereby rendering the sample more susceptible to damage. The proposed methods will be readily extended to characterize other mechanical properties of FAM.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.