From Cognition to Computation: A Comparative Review of Human Attention and Transformer Architectures

Minglu Zhao, Dehong Xu, Tao Gao
{"title":"From Cognition to Computation: A Comparative Review of Human Attention and Transformer Architectures","authors":"Minglu Zhao, Dehong Xu, Tao Gao","doi":"arxiv-2407.01548","DOIUrl":null,"url":null,"abstract":"Attention is a cornerstone of human cognition that facilitates the efficient\nextraction of information in everyday life. Recent developments in artificial\nintelligence like the Transformer architecture also incorporate the idea of\nattention in model designs. However, despite the shared fundamental principle\nof selectively attending to information, human attention and the Transformer\nmodel display notable differences, particularly in their capacity constraints,\nattention pathways, and intentional mechanisms. Our review aims to provide a\ncomparative analysis of these mechanisms from a cognitive-functional\nperspective, thereby shedding light on several open research questions. The\nexploration encourages interdisciplinary efforts to derive insights from human\nattention mechanisms in the pursuit of developing more generalized artificial\nintelligence.","PeriodicalId":501219,"journal":{"name":"arXiv - QuanBio - Other Quantitative Biology","volume":"211 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Other Quantitative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.01548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Attention is a cornerstone of human cognition that facilitates the efficient extraction of information in everyday life. Recent developments in artificial intelligence like the Transformer architecture also incorporate the idea of attention in model designs. However, despite the shared fundamental principle of selectively attending to information, human attention and the Transformer model display notable differences, particularly in their capacity constraints, attention pathways, and intentional mechanisms. Our review aims to provide a comparative analysis of these mechanisms from a cognitive-functional perspective, thereby shedding light on several open research questions. The exploration encourages interdisciplinary efforts to derive insights from human attention mechanisms in the pursuit of developing more generalized artificial intelligence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从认知到计算:人类注意力与变压器架构比较评述
注意力是人类认知的基石,它有助于在日常生活中有效地提取信息。最近人工智能的发展,如 Transformer 架构,也在模型设计中融入了注意力的理念。然而,尽管选择性注意信息的基本原理是相同的,人类注意力和变形模型却表现出明显的差异,尤其是在能力限制、注意途径和意向机制方面。我们的综述旨在从认知功能的角度对这些机制进行比较分析,从而揭示几个有待解决的研究问题。这一探索鼓励跨学科的努力,从人类的注意力机制中获得启示,从而开发出更广泛的人工智能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opportunities and challenges of mRNA technologies in development of Dengue Virus Vaccine Compatibility studies of loquat scions with loquat and quince rootstocks Analysis of Potential Biases and Validity of Studies Using Multiverse Approaches to Assess the Impacts of Government Responses to Epidemics Advances in Nanoparticle-Based Targeted Drug Delivery Systems for Colorectal Cancer Therapy: A Review Unveiling Parkinson's Disease-like Changes Triggered by Spaceflight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1