Machine Learning Models for Dengue Forecasting in Singapore

Zi Iun Lai, Wai Kit Fung, Enquan Chew
{"title":"Machine Learning Models for Dengue Forecasting in Singapore","authors":"Zi Iun Lai, Wai Kit Fung, Enquan Chew","doi":"arxiv-2407.00332","DOIUrl":null,"url":null,"abstract":"With emerging prevalence beyond traditionally endemic regions, the global\nburden of dengue disease is forecasted to be one of the fastest growing. With\nlimited direct treatment or vaccination currently available, prevention through\nvector control is widely believed to be the most effective form of managing\noutbreaks. This study examines traditional state space models (moving average,\nautoregressive, ARIMA, SARIMA), supervised learning techniques (XGBoost, SVM,\nKNN) and deep networks (LSTM, CNN, ConvLSTM) for forecasting weekly dengue\ncases in Singapore. Meteorological data and search engine trends were included\nas features for ML techniques. Forecasts using CNNs yielded lowest RMSE in\nweekly cases in 2019.","PeriodicalId":501219,"journal":{"name":"arXiv - QuanBio - Other Quantitative Biology","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Other Quantitative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With emerging prevalence beyond traditionally endemic regions, the global burden of dengue disease is forecasted to be one of the fastest growing. With limited direct treatment or vaccination currently available, prevention through vector control is widely believed to be the most effective form of managing outbreaks. This study examines traditional state space models (moving average, autoregressive, ARIMA, SARIMA), supervised learning techniques (XGBoost, SVM, KNN) and deep networks (LSTM, CNN, ConvLSTM) for forecasting weekly dengue cases in Singapore. Meteorological data and search engine trends were included as features for ML techniques. Forecasts using CNNs yielded lowest RMSE in weekly cases in 2019.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新加坡登革热预测的机器学习模型
随着登革热在传统流行地区之外的新流行,预计全球登革热病负担将成为增长最快的疾病之一。由于目前可提供的直接治疗或疫苗接种有限,人们普遍认为通过病媒控制进行预防是控制疫情的最有效方式。本研究检验了用于预测新加坡每周登革热病例的传统状态空间模型(移动平均、自回归、ARIMA、SARIMA)、监督学习技术(XGBoost、SVM、KNN)和深度网络(LSTM、CNN、ConvLSTM)。气象数据和搜索引擎趋势被作为 ML 技术的特征。在 2019 年的每周案例中,使用 CNN 进行预测的 RMSE 最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opportunities and challenges of mRNA technologies in development of Dengue Virus Vaccine Compatibility studies of loquat scions with loquat and quince rootstocks Analysis of Potential Biases and Validity of Studies Using Multiverse Approaches to Assess the Impacts of Government Responses to Epidemics Advances in Nanoparticle-Based Targeted Drug Delivery Systems for Colorectal Cancer Therapy: A Review Unveiling Parkinson's Disease-like Changes Triggered by Spaceflight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1